Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nano Lett ; 24(19): 5847-5854, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700109

RESUMO

We report a new design of polymer phenylacetylene (PA) ligands and the ligand exchange methodology for colloidal noble metal nanoparticles (NPs). PA-terminated poly(ethylene glycol) (PEG) can bind to metal NPs through acetylide (M-C≡C-R) that affords a high grafting density. The ligand-metal interaction can be switched between σ bonding and extended π backbonding by changing grafting conditions. The σ bonding of PEG-PA with NPs is strong and it can compete with other capping ligands including thiols, while the π backbonding is much weaker. The σ bonding is also demonstrated to improve the catalytic performance of Pd for ethanol oxidation and prevent surface absorption of the reaction intermediates. Those unique binding characteristics will enrich the toolbox in the control of colloidal surface chemistry and their applications using polymer ligands.

2.
Molecules ; 29(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39202887

RESUMO

Poly(hydromethylsiloxane) (PHMS) was cross-linked with 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane (D4Vi) in water-in-oil High Internal Phase Emulsions to form macroporous materials known as polyHIPEs. It was shown that in the process of pyrolysis under Ar atmosphere at 520 °C, the obtained polyHIPEs were converted to ceramers with high yields (82.8-88.0 wt.%). Structurally, the obtained ceramers were hybrid ceramics, i.e., they consisted of Si-O framework and preserved organic moieties. Macropores present in the polyHIPE precursors remained in ceramers. Ceramers contained also micro- and mesopores which resulted from the precursor's mass loss during pyrolysis. Total pore volume and BET specific surface area related to the existence of micro- and mesopores in ceramers depended on the PHMS: D4Vi ratio applied in polyHIPE synthesis. The highest total pore volume (0.143 cm3/g) and specific surface area (344 m2/g) were reached after pyrolysis of the precursor prepared with the lowest amount of D4Vi as compared to PHMS. The composite materials obtained after deposition of PdO nanoparticles onto ceramers followed by reduction of PdO by H2 were active and selective catalysts for phenylacetylene hydrogenation to styrene.

3.
Angew Chem Int Ed Engl ; 63(42): e202410246, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39046089

RESUMO

In the field of industrial semi-hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi-hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (>96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi-industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr-O-H and bridge Zr-O-H can dissociate H2, while the terminal Zr-O-H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene.

4.
Angew Chem Int Ed Engl ; 63(32): e202403313, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38742679

RESUMO

Nanostructuration of dynamic helical polymers such as poly(phenylacetylene)s (PPAs) depends on the secondary structure adopted by the polymer and the functional group used to connect the chiral pendant to the PPA backbone. Thus, while PPAs with dynamic and flexible scaffolds (para- and meta-substituted, ω1<165°) generate by nanoprecipitation low polydisperse nanospheres with controllable size at different acetone/water mixtures, those with a quasi-static behavior and the presence of an extended, almost planar structure (ortho-substituted, ω1>165°), aggregate into a mixture of spherical and oval nanostructures whose size is not controlled. Photostability studies show that poly(phenylacetylene) particles are more stable to light irradiation than when dissolved macromolecularly. Moreover, the photostability of the particle depends on the secondary structure of the PPA and its screw sense excess. This fact, in combination with the encapsulation ability of these polymer particles, allows the creation of light stimuli-responsive nanocarriers, whose cargo can be delivered by light irradiation.

5.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241882

RESUMO

The Pd(II) complexes [Pd(Cp)(L)n]m[BF4]m were synthesized via the reaction of cationic acetylacetonate complexes with cyclopentadiene in the presence of BF3∙OEt2 (n = 2, m = 1: L = PPh3 (1), P(p-Tol)3, tris(ortho-methoxyphenyl)phosphine (TOMPP), tri-2-furylphosphine, tri-2-thienylphosphine; n = 1, m = 1: L = dppf, dppp (2), dppb (3), 1,5-bis(diphenylphosphino)pentane; n = 1, m = 2 or 3: 1,6-bis(diphenylphosphino)hexane). Complexes 1-3 were characterized using X-ray diffractometry. The inspection of the crystal structures of the complexes enabled the recognition of (Cp-)⋯(Ph-group) and (Cp-)⋯(CH2-group) interactions, which are of C-H…π nature. The presence of these interactions was confirmed theoretically via DFT calculations using QTAIM analysis. The intermolecular interactions in the X-ray structures are non-covalent in origin with an estimated energy of 0.3-1.6 kcal/mol. The cationic palladium catalyst precursors with monophosphines were found to be active catalysts for the telomerization of 1,3-butadiene with methanol (TON up to 2.4∙104 mol 1,3-butadiene per mol Pd with chemoselectivity of 82%). Complex [Pd(Cp)(TOMPP)2]BF4 was found to be an efficient catalyst for the polymerization of phenylacetylene (PA) (catalyst activities up to 8.9 × 103 gPA·(molPd·h)-1 were observed).

6.
Molecules ; 28(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985545

RESUMO

Trichloro niobium(V) complexes 3 and 4 with the sulfur- or selenium-bridged [OEO]-type bis(phenolate) ligands (E = S, Se) were synthesized and fully characterized on the basis of their NMR spectroscopic data and X-ray crystallographic analysis. In the crystalline state of 4, the [OSeO]-core of the ligand was coordinated to the niobium center in a fac-fashion. The corresponding tribenzyl niobium(V) complexes 5 and 6 were also prepared by the reactions of 3 and 4 with 3 equivalents of PhCH2MgCl in toluene. The X-ray diffraction analysis of 6 revealed that the distorted six-coordinated niobium center incorporated in the [OSeO]-type ligand took a mer-fashion, and one benzyl ligand was coordinated to the niobium center by η2-fashion. Complexes 5 and 6 were tested for the phenylacetylene polymerization that produced poly(phenylacetylene)s (PPAs), oligomers, and triphenylbenzenes (TPBs) depending on the chalcogen atom in the [OEO]-type ligand.

7.
Angew Chem Int Ed Engl ; 62(29): e202303329, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37213135

RESUMO

Helix inversion in chiral dynamic helical polymers is usually achieved by conformational changes at the pendant groups induced through external stimuli. Herein, a different mechanism of helix inversion in poly(phenylacetylene)s (PPAs) is presented, based on the activation/deactivation of supramolecular interactions. We prepared poly[(allenylethynylenephenylene)acetylene]s (PAEPAs) in which the pendant groups are conformationally locked chiral allenes. Therefore, their substituents are placed in specific spatial orientations. As a result, the screw sense of a PAEPA is fixed by the allenyl substituent with the optimal size/distance relationship to the backbone. This helical sense command can be surpassed by supramolecular interactions between another substituent on the allene and appropriate external stimuli, such as amines. So, a helix inversion occurs through a novel axial-to-helical communication mechanism, opening a new scenario for taming the helices of chiral dynamic helical polymers.

8.
Angew Chem Int Ed Engl ; 61(33): e202207623, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35731840

RESUMO

Helical polymers such as poly(phenylacetylene)s (PPAs) are interesting materials due to the possibility of tuning their helical scaffold (sense and elongation) once they have been prepared and by the presence of external stimuli. The main limitation in the application of PPAs is their poor photostability. These polymers degrade under visible light exposure through a photochemical electrocyclization process. In this work, it was demonstrated, through a selected example, how the photochemical degradation in PPAs is directly related to their dynamic helical behavior. Thus, while PPAs with dynamic helical structures show poor photostability under UV/Vis light exposure, poly-(R)-1, bearing an enantiopure sulfoxide group as pendant group and designed to have a quasi-static helical behavior, shows a large photostability due to the restricted conformational composition at the polyene backbone, needed to orient the conjugated double bonds prior to the photochemical electrocyclization process and the subsequent degradation of the material.


Assuntos
Parafusos Ósseos , Polímeros , Acetileno/análogos & derivados , Polímeros/química , Estereoisomerismo
9.
Angew Chem Int Ed Engl ; 60(15): 8095-8103, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33332770

RESUMO

Photochemical electrocyclization of poly(phenylacetylene)s (PPAs) is used for the structural elucidation of a polyene backbone. This method not only allows classification of PPAs in cis-cisoidal (ω1 <90°) or cis-transoidal structures (ω1 >90°), but also approximating ω1 . A PPA solution is illuminated with visible light and monitoring the photochemical electrocyclization of the PPA helix by measuring the ECD spectra at different times. PPAs with a cis-cisoidal structure show a reduction of the ECD signal of at least 50 % before 30 min of irradiation, while cis-transoidal helices need much longer time because the transoidal bond must be isomerized. The different cis-cisoidal and cis-transoidal helices require different times to decrease their ECD signal by 50 % (t1/2 ), depending on the degree of compression or stretching of the helix, establishing a relationship between the secondary structure adopted by PPA (ω1 ) and the time required to lose the ECD vinylic signal by light irradiation.

10.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32086308

RESUMO

Ammonia monooxygenase (AMO) is a key nitrogen-transforming enzyme belonging to the same copper-dependent membrane monooxygenase family (CuMMO) as the particulate methane monooxygenase (pMMO). The AMO from ammonia-oxidizing archaea (AOA) is very divergent from both the AMO of ammonia-oxidizing bacteria (AOB) and the pMMO from methanotrophs, and little is known about the structure or substrate range of the archaeal AMO. This study compares inhibition by C2 to C8 linear 1-alkynes of AMO from two phylogenetically distinct strains of AOA, "Candidatus Nitrosocosmicus franklandus" C13 and "Candidatus Nitrosotalea sinensis" Nd2, with AMO from Nitrosomonas europaea and pMMO from Methylococcus capsulatus (Bath). An increased sensitivity of the archaeal AMO to short-chain-length alkynes (≤C5) appeared to be conserved across AOA lineages. Similarities in C2 to C8 alkyne inhibition profiles between AMO from AOA and pMMO from M. capsulatus suggested that the archaeal AMO has a narrower substrate range than N. europaea AMO. Inhibition of AMO from "Ca Nitrosocosmicus franklandus" and N. europaea by the aromatic alkyne phenylacetylene was also investigated. Kinetic data revealed that the mechanisms by which phenylacetylene inhibits "Ca Nitrosocosmicus franklandus" and N. europaea are different, indicating differences in the AMO active site between AOA and AOB. Phenylacetylene was found to be a specific and irreversible inhibitor of AMO from "Ca Nitrosocosmicus franklandus," and it does not compete with NH3 for binding at the active site.IMPORTANCE Archaeal and bacterial ammonia oxidizers (AOA and AOB, respectively) initiate nitrification by oxidizing ammonia to hydroxylamine, a reaction catalyzed by ammonia monooxygenase (AMO). AMO enzyme is difficult to purify in its active form, and its structure and biochemistry remain largely unexplored. The bacterial AMO and the closely related particulate methane monooxygenase (pMMO) have a broad range of hydrocarbon cooxidation substrates. This study provides insights into the AMO of previously unstudied archaeal genera, by comparing the response of the archaeal AMO, a bacterial AMO, and pMMO to inhibition by linear 1-alkynes and the aromatic alkyne, phenylacetylene. Reduced sensitivity to inhibition by larger alkynes suggests that the archaeal AMO has a narrower hydrocarbon substrate range than the bacterial AMO, as previously reported for other genera of AOA. Phenylacetylene inhibited the archaeal and bacterial AMOs at different thresholds and by different mechanisms of inhibition, highlighting structural differences between the two forms of monooxygenase.


Assuntos
Alcinos/metabolismo , Archaea/metabolismo , Oxirredutases/metabolismo , Amônia/metabolismo
11.
Chirality ; 32(5): 547-555, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105371

RESUMO

Two novel helical poly(phenylacetylene) derivatives containing chiral phenylethyl carbamate residues in the end of each side chain (PPA-S and PPA-R) were synthesized by polymerization of the corresponding phenylacetylene monomers using Rh(nbd)BPh4 as a catalyst in DMF. The enantioseparation properties of the polymers were evaluated as coated-type chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Under the same chromatographic conditions, PPA-S and PPA-R showed different enantioseparation properties, indicating that the different interactions between the analytes and the polymers, which result from the different chiral phenylethyl carbamate groups in the end of each side chains. Racemates 1, 7, and 8 could be better resolved on PPA-S, while racemate 6 was separated on PPA-R more efficiently. In addition, the coated-type CSPs showed good solvent tolerability and could work without any damage by introducing the polar solvents, such as CHCl3 and THF, in eluent. Moreover, some racemates could be better resolved on these coated-type CSPs with the addition of THF to the eluent.

12.
Angew Chem Int Ed Engl ; 59(5): 1837-1844, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31736245

RESUMO

A substituted poly(phenylacetylene) derivative (PPAHB ) with two hydroxymethyl groups at the meta position of the side phenyl ring was examined as a conformation-switchable helical spring polymer that responds to solvent and heat stimuli in a precisely controlled manner. Intramolecular hydrogen bonds, which cause the helical structure of the polymer, were broken and re-formed by adjusting the hydrogen-bonding strength values (pKHB ) of various combinations of solvents or by varying the temperature. In this process, a reversible conformational change from cis-cisoid to cis-transoid, accompanied by a phase transition in the form of a helix-coil transformation occurred, with the polymer exhibiting critical changes of color fading and recovery in specific environments. These results demonstrate that PPAHB can be used as either a pKHB indicator or a thermometer. The color changes of the polymer solution are described in detail based on spectroscopic analyses and thermodynamic considerations.

13.
Angew Chem Int Ed Engl ; 59(52): 23724-23730, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32926527

RESUMO

Different communication mechanisms can be switched within a copolymer by acting on the conformational composition of the components and their chirality. Thus, a sergeant and soldiers effect is produced in two diastereomeric copolymer series, poly[(S)-1r -co-(S)-2(1-r) ] and poly[(R)-1r -co-(S)-2(1-r) ], owing to the presence in chloroform of a preferred conformation in (S)-2, and a conformational equilibrium in 1, where a P helix is induced independently of the absolute configuration of the soldier. In THF, the presence of a conformational equilibrium at the pendants of the two components produces a reciprocal chiral enhancement effect by copolymerization of the two monomers, while in DMF, a third chiral to chiral communication switch is produced due to the presence of a single conformer at the pendant group of the two components. In such a case, a chiral conflict or chiral accord effect is produced depending if the two components induce the same or the opposite helical sense.

14.
Angew Chem Int Ed Engl ; 59(22): 8616-8622, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32145047

RESUMO

Herein, macromolecular gears composed of helical poly(phenylacetylenes) (PPAs) bearing short oligopeptides as pendant groups are described, in which the two structural motifs (framework and substituents) are combined. These gears are obtained by polymerization of the acetylene groups introduced at the C-terminus of short oligopeptides formed by achiral (Aib)n units (n=1-3) derivatized at the N-terminus by a single enantiomer (R or S) of α-methoxy-α-trifluoromethylphenylacetic acid (MTPA, Mosher's reagent). The chiral information of the MTPA is transmitted to the achiral Aib fragments and, through either chiral tele-induction and/or chiral harvesting mechanisms, is further transferred to the polyene backbones, which adopt preferentially P or M helical senses. Moreover, these materials also show dynamic behavior and respond to the action of external stimuli by either inverting the P/M sense and/or modifying the elongation in fully reversible processes.

15.
Angew Chem Int Ed Engl ; 59(23): 9080-9087, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32125060

RESUMO

Poly(phenylacetylene)s are a family of helical polymers constituted by conjugated double bonds. Raman spectra of these polymers show a structural fingerprint of the polyene backbone which, in combination with its helical orientation, makes them good candidates to be studied by Raman optical activity (ROA). Four different well-known poly(phenylacetylene)s adopting different scaffolds and ten different helical senses have been prepared. Raman and ROA spectra were recorded and allowed to establish ROA-spectrum/helical-sense relationships: a left/right-handed orientation of the polyene backbone (Mhelix /Phelix ) produces a triplet of positive/negative ROA bands. Raman and ROA spectra of each polymer exhibited the same profile, and the sign of the ROA spectrum was opposite to the lowest-energy electronic circular dichroism (ECD) band, indicating a resonance effect. Resonance ROA appears then as an indicator of the helical sense of poly(phenylacetylene)s, especially for those with an extra Cotton band in the ECD spectrum, where a wrong helical sense is assigned based on ECD, while ROA alerts of this misassignment.

16.
Angew Chem Int Ed Engl ; 59(11): 4537-4543, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31880378

RESUMO

The dynamic behavior of helical polymers bearing pendant groups with two chiral centers was studied. Controlled conformational changes at the chiral units placed either closer to or further away from the main chain promote different helical structures. Although the first residue is usually responsible for determining a specific helicity (P or M), we now found that the second chiral center is also able to induce a preferred helical sense when it is located closer in space to the main chain, thereby cancelling the order from the first chiral moiety. This result was achieved through proper coordination with a metal cation. As proof of concept, poly(phenylacetylene)s (PPAs) that bear one and two chiral amino acid units of different sizes and configuration combinations (l/d-alanine and l/d-phenylalanine) as pendants were evaluated. In total, ten polymers were studied. This constitutes the first report of axial control from a remote stereocenter in polymers bearing complex chiral pendants.

17.
Small ; 15(13): e1805413, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30786148

RESUMO

Interconversion between extended and bent structures at the pendant groups of a chiral polyene framework [poly(phenylacetylene) with (R)-(2-methoxy-2-phenylacetyl)glycine residues linked to 4-vinylanilines] allows the reversible colorimetric transformation from stretched to compressed helical cis-transoid polyenic structures through manipulation of the flexible spacer. This transformation generates either organogels (stretched helical form) or nanoparticles (compressed helical form) under the control of polar/low polar stimuli respectively and opens the way to the development of new sensors and stimuli-sensitive materials based on these concepts.

18.
Angew Chem Int Ed Engl ; 58(38): 13365-13369, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31309672

RESUMO

A new multi-sensor material based on helical copolymers showing the chiral conflict effect have been prepared. It can successfully detect and identify diverse metal cations in solution. The design of this material has taken into account not only the opposite helical senses induced by the two chiral monomers in the copolymer, but also their dynamic behavior. The induced helical sense can thus be enhanced, diminished, or inverted by interaction with different stimuli (that is, metal ions). Thus, depending on both the copolymer compositions (such as monomer ratios and absolute configurations) and the nature of the metal ion, the response of these dynamic helical copolymers to adopt a single-handed P or M helix is unique, making it possible not only to detect their presence, but also to identify them individually. New multi-sensors materials based and inspired on this effect should arise in the future choosing appropriate monomers and stimuli.

19.
Chemistry ; 24(42): 10617-10620, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799659

RESUMO

A photoredox-mediated acylation reaction of electron deficient heteroarenes with terminal alkynes is reported. The method relies on oxidative cleavage of phenylacetylenes for generation of acyl radicals as a key enabling feature. The reaction is regioselective with broad substrate scope. Quantum yield investigations support a radical chain mechanism.

20.
Molecules ; 23(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425165

RESUMO

A nitronyl nitroxide derivative, 2-phenylethynyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-oxide (1), and two verdazyl derivatives carrying a phenylacetylene unit, 1,5-diphenyl-3-phenylethynyl-6-oxo-1,2,4,5-tetrazin-2-yl (2) and 1,5-diisopropyl-3-phenylethynyl-6-oxo-1,2,4,5-tetrazin-2-yl (3), were synthesized and their packing structures were studied by X-ray crystallographic analysis and magnetically characterized in the solid state. While 1 and 3 had an isolated doublet spin state, 2 formed an antiferromagnetically coupled pair (2J/kB = -118 K). Density functional theory (DFT) calculations reveal that the spin density polarized in the phenyl group decreases as the dihedral angle between the phenyl ring and radical plane increases.


Assuntos
Acetileno/análogos & derivados , Imidazóis/química , Óxidos de Nitrogênio/química , Acetileno/síntese química , Acetileno/química , Simulação por Computador , Imidazóis/síntese química , Imãs/química , Estrutura Molecular , Óxidos de Nitrogênio/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA