Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 980
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 86: 225-244, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28301741

RESUMO

Autophagy is the process of cellular self-eating by a double-membrane organelle, the autophagosome. A range of signaling processes converge on two protein complexes to initiate autophagy: the ULK1 (unc51-like autophagy activating kinase 1) protein kinase complex and the PI3KC3-C1 (class III phosphatidylinositol 3-kinase complex I) lipid kinase complex. Some 90% of the mass of these large protein complexes consists of noncatalytic domains and subunits, and the ULK1 complex has essential noncatalytic activities. Structural studies of these complexes have shed increasing light on the regulation of their catalytic and noncatalytic activities in autophagy initiation. The autophagosome is thought to nucleate from vesicles containing the integral membrane protein Atg9 (autophagy-related 9), COPII (coat protein complex II) vesicles, and possibly other sources. In the wake of reconstitution and super-resolution imaging studies, we are beginning to understand how the ULK1 and PI3KC3-C1 complexes might coordinate the nucleation and fusion of Atg9 and COPII vesicles at the start of autophagosome biogenesis.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/química , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Classe III de Fosfatidilinositol 3-Quinases/química , Classe III de Fosfatidilinositol 3-Quinases/genética , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fagossomos/ultraestrutura , Fosfatidilinositol 3-Quinase/química , Fosfatidilinositol 3-Quinase/genética , Ligação Proteica , Multimerização Proteica , Transdução de Sinais
2.
Mol Cell ; 71(2): 343-351.e4, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029007

RESUMO

Class II phosphoinositide 3-kinases (PI3K-C2) are large multidomain enzymes that control cellular functions ranging from membrane dynamics to cell signaling via synthesis of 3'-phosphorylated phosphoinositides. Activity of the alpha isoform (PI3K-C2α) is associated with endocytosis, angiogenesis, and glucose metabolism. How PI3K-C2α activity is controlled at sites of endocytosis remains largely enigmatic. Here we show that the lipid-binding PX-C2 module unique to class II PI3Ks autoinhibits kinase activity in solution but is essential for full enzymatic activity at PtdIns(4,5)P2-rich membranes. Using HDX-MS, we show that the PX-C2 module folds back onto the kinase domain, inhibiting its basal activity. Destabilization of this intramolecular contact increases PI3K-C2α activity in vitro and in cells, leading to accumulation of its lipid product, increased recruitment of the endocytic effector SNX9, and facilitated endocytosis. Our studies uncover a regulatory mechanism in which coincident binding of phosphoinositide substrate and cofactor selectively activate PI3K-C2α at sites of endocytosis.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Domínios C2/fisiologia , Células COS , Chlorocebus aethiops , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/fisiologia , Clatrina/fisiologia , Endocitose/fisiologia , Células HEK293 , Homeostase , Humanos , Lipídeos/fisiologia , Espectrometria de Massas , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 120(36): e2306414120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37643213

RESUMO

Targeted inhibitors of bromodomain and extraterminal (BET)-bromodomains and phosphatidylinositol-3-kinase (PI3K) signaling demonstrate potent but self-limited antilymphoma activity as single agents in the context of cellular Myelocytomatosis (cMYC) oncogene-dysregulation. However, combined PI3K and BET inhibition imparts synergistic anticancer activity with the potential for more sustained disease responses due to the mutual antagonism of compensatory epigenetic and signaling networks. Here, we describe the mechanistic and therapeutic validation of rationally designed dual PI3K/BET bromodomain inhibitors, built by linkage of established PI3K and BET inhibitor pharmacophores. The lead candidate demonstrates high selectivity, nanomolar range cellular potency, and compelling in vivo efficacy, including curative responses in the aggressive Eµ-Myc lymphoma model. These studies further support the therapeutic strategy of combined PI3K and BET inhibition and provide a potential step-change in approach to orthogonal MYC antagonism using optimized chimeric small-molecule technology.


Assuntos
Linfoma , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinase , Agressão , Epigenômica , Linfoma/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase
4.
J Biol Chem ; 300(3): 105679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272219

RESUMO

Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K-Akt signaling by MVK reversed epidermal growth factor-induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Butanonas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
5.
Bioessays ; 45(3): e2200196, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36567275

RESUMO

Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that produce 3-phosphorylated derivatives of phosphatidylinositol upon activation by various cues. These 3-phosphorylated lipids bind to various protein effectors to control many cellular functions. Lipid phosphatases such as phosphatase and tensin homolog (PTEN) terminate PI3K-derived signals and are critical to ensure appropriate signaling outcomes. Many lines of evidence indicate that PI3Ks and PTEN, as well as some specific lipid effectors are highly compartmentalized, either in plasma membrane nanodomains or in endosomal compartments. We examine the evidence for specific recruitment of PI3Ks, PTEN, and other related enzymes to membrane nanodomains and endocytic compartments. We then examine the hypothesis that scaffolding of the sources (PI3Ks), terminators (PTEN), and effectors of these lipid signals with a common plasma membrane nanodomain may achieve highly localized lipid signaling and ensure selective activation of specific effectors. This highlights the importance of spatial regulation of PI3K signaling in various physiological and disease contexts.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositóis/metabolismo , Membrana Celular/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-39250817

RESUMO

The class 3 phosphatidylinositol 3-kinase (Pik3c3) plays critical roles in regulating autophagy, endocytosis, and nutrient sensing, but its expression profile in the kidney remains undefined. Recently, we validated a Pik3c3 antibody through immunofluorescence staining of kidney tissues from cell type-specific Pik3c3 knockout mice. Immunohistochemistry unveiled significant disparities in Pik3c3 expression levels across various kidney cell types. Notably, renal interstitial cells exhibit minimal Pik3c3 expression. Further, co-immunofluorescence staining, utilizing nephron segment- or cell type-specific markers, revealed nearly undetectable levels of Pik3c3 expression in glomerular mesangial cells and endothelial cells. Intriguingly, although podocytes exhibit the highest Pik3c3 expression levels among all kidney cell types, the renal proximal tubule cells (RPTCs) express the highest level of Pik3c3 among all renal tubules. RPTCs are known to express the highest level of the epidermal growth factor receptor (EGFR) in adult kidneys; however, the role of Pik3c3 in EGFR signaling within RPTCs remains unexplored. Therefore, we conducted additional cell culture studies. The results demonstrated that Pik3c3 inhibition significantly delayed EGF-stimulated EGFR degradation and the termination of EGFR signaling in RPTCs. Mechanistically, Pik3c3 inhibition surprisingly did not affect the initial endocytosis process but instead impeded the lysosomal degradation of EGFR. In summary, this study defines, for the first time, the expression profile of Pik3c3 in the mouse kidney and also highlights a pivotal role of Pik3c3 in the proximal tubule cells. These findings shed light on the intricate mechanisms underlying Pik3c3-mediated regulation of EGFR signaling, providing valuable insights into the role of Pik3c3 in renal cell physiology.

7.
J Biol Chem ; 299(8): 105022, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423304

RESUMO

Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3) lipids by PI3K. Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P3 to generate phosphatidylinositol-(3,4)-bisphosphate. Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single-molecule total internal reflection fluorescence microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that localization of the central catalytic domain of SHIP1 is insensitive to dynamic changes in PI(3,4,5)P3 and phosphatidylinositol-(3,4)-bisphosphate both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine and PI(3,4,5)P3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal Src homology 2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor-derived phosphopeptides presented either in solution or conjugated to a membrane. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid-binding specificity, protein-protein interactions, and the activation of autoinhibited SHIP1.


Assuntos
Fosfatidilinositol 3-Quinases , Monoéster Fosfórico Hidrolases , Inositol Polifosfato 5-Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Domínios de Homologia de src , Fosfatidilinositóis , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo
8.
J Neurophysiol ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196677

RESUMO

The pathological and physiological process of spinal cord injury is complex, and there is currently no effective treatment method. Magnetic stimulation is an emerging electromagnetic therapy method in recent years, and studies have shown its potential to reduce cell apoptosis. This study used an improved Allen's method to replicate an incomplete spinal cord injury rat model, and repetitive magnetic stimulation intervention was performed on the rats for 21 days. The research plan consists of two parts. The first part aims to observe the effects of rMS on motor function and neuronal cell apoptosis in rats. The BBB score results indicate that rMS promotes the recovery of motor function in rats; H&E staining showed that rMS improved spinal cord structural damage and inflammatory infiltration; TUNEL and NeuN staining suggest that rMS can reduce cell apoptosis and promote neuronal cell survival. The second part aims to explore the mechanism of action of rMS. Immunofluorescence staining showed that after rMS intervention, the positive counts of PI3K and Akt increased, while the positive counts of Caspase-3 decreased. Western blot showed that after rMS intervention, the expression of p-PI3K/PI3K, p-Akt/Akt, and Bcl-2 increased, while the expression of Bax and Caspase-3 decreased. In summary, rMS can significantly reduce cell apoptosis in the damaged spinal cord and promote neuronal cell survival. Its mechanism of action may be related to promoting the expression of PI3K/Akt pathway proteins, upregulating the anti apoptotic protein Bcl-2, downregulating the pro apoptotic protein Bax, and thereby inhibiting the expression of apoptotic protein Caspase-3.

9.
Biol Pharm Bull ; 47(3): 600-605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447992

RESUMO

Temperature-dependent translational control of the core clock gene Per2 plays an important role in establishing entrainment of the circadian clock to physiological body temperature cycles. Previously, we found an involvement of the phosphatidylinositol 3-kinase (PI3K) in causing Per2 protein expression in response to a warm temperature shift (WTS) within a physiological range (from 35 to 38.5 °C). However, signaling pathway mediating the Per2 protein expression in response to WTS is only sparsely understood. Additional factor(s) other than PI3K remains unknown. Here we report the identification of eukaryotic initiation factor 2α (eIF2α) kinases, protein kinase R (PKR) and PKR-like endoplasmic reticulum kinase (PERK), as a novel mediator of WTS-dependent Per2 protein expression. Canonically, eIF2α has been regarded as a major downstream target of PERK and PKR. However, we found that PERK and PKR mediate WTS response of Per2 in a manner not involving eIF2α. We observed that PERK and PKR serve as an upstream regulator of PI3K rather than eIF2α in the context of WTS-dependent Per2 protein expression. There have been studies reporting PI3K activation occurring depending on PERK and PKR, while its physiological contribution has remained elusive. Our finding therefore not only helps to enrich the knowledge of how WTS affects Per2 protein expression but also extends the region of cellular biology involving the PERK/PKR-mediated PI3K activation to include entrainment-mechanism of the circadian clock.


Assuntos
Relógios Circadianos , Fosfatidilinositol 3-Quinases , Temperatura , Regulação para Cima , Biotina , Fosfatidilinositol 3-Quinase , eIF-2 Quinase/genética
10.
BMC Womens Health ; 24(1): 366, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909214

RESUMO

BACKGROUND: Insulin resistance (IR) induces hyperinsulinemia, which activates downstream signaling pathways such as the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway, ultimately leading to abnormal proliferation and apoptosis of endometrial cells. This is thought to be a key pathogenic mechanism underlying the development of endometrial polyps (EP). This study aims to investigate the relationship between IR and the development of EP, the expression levels of downstream signaling molecules, including PI3K and AKT, and related laboratory parameters were examined. METHODS: A total of 100 patients who visited the gynecology outpatient clinic of Zhongda Hospital affiliated with Southeast University from May 2021 to March 2023 and were diagnosed with abnormal endometrial echoes by vaginal ultrasound and underwent hysteroscopic diagnostic curettage were enrolled in this study. General data and relevant hematological indicators were compared, and intraoperative specimens were obtained for pathological examination. Possible factors influencing the development of endometrial polyps were analyzed using Pearson correlation analysis and logistic regression analysis. RESULTS: In terms of body mass index, waist circumference, fasting insulin, insulin resistance index, serum total testosterone, and free testosterone index, women of childbearing age in the endometrial polyp group had higher values than those in the non-polyp group, while sex hormone-binding globulin in the endometrial polyp group was lower than that in the non-polyp group, and the differences were statistically significant (P < 0.05). The expression scores and mRNA expression levels of PI3K and AKT proteins were higher in the EP group than in the non-EP group (p < 0.05). Pearson correlation analysis showed a positive correlation between HOMA-IR and the expression scores of PI3K and AKT proteins (p < 0.01). CONCLUSIONS: Insulin resistance and abnormal activation of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway may be potential pathogenic mechanisms for the development of endometrial polyps.


Assuntos
Resistência à Insulina , Fosfatidilinositol 3-Quinases , Pólipos , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adulto , Fosfatidilinositol 3-Quinases/metabolismo , Pessoa de Meia-Idade , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Índice de Massa Corporal , Transdução de Sinais , Endométrio/metabolismo , Endométrio/patologia , Globulina de Ligação a Hormônio Sexual/metabolismo , Globulina de Ligação a Hormônio Sexual/análise , Testosterona/sangue , Insulina/metabolismo , Insulina/sangue
11.
Adv Exp Med Biol ; 1460: 329-356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287857

RESUMO

Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thereby, compared to lean subjects, obese individuals have almost half lower capillary density and more than half lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 alpha (HIF-1α) activity also requires phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR)-mediated signaling. Especially HIF-1α is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia contributes to several biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation, and insulin resistance (IR). Pathogenesis of obesity-related comorbidities is attributed to intermittent hypoxia (IH), which is mostly observed in visceral obesity. Proinflammatory phenotype of the adipose tissue is a crucial link between IH and the development of IR. Inhibition of adaptive unfolded protein response (UPR) in hypoxia increases ß cell death. Moreover, deletion of HIF-1α worsens ß cell function. Oxidative stress, as well as the release of proinflammatory cytokines/adipokines in obesity, is proportional to the severity of IH. Reactive oxygen species (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal; however, mitochondrial ROS production is required for hypoxic HIF-1α protein stabilization. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible for the dysregulated adipocytokines production in obesity. Hypoxia both inhibits adipocyte differentiation from preadipocytes and macrophage migration from the hypoxic adipose tissue. Upon reaching a hypertrophic threshold beyond the adipocyte fat loading capacity, excess extracellular matrix (ECM) components are deposited, causing fibrosis. HIF-1α initiates the whole pathological process of fibrosis and inflammation in the obese adipose tissue. In addition to stressed adipocytes, hypoxia contributes to immune cell migration and activation which further aggravates adipose tissue fibrosis. Therefore, targeting HIF-1α might be an efficient way to suppress hypoxia-induced pathological changes in the ECM. The fibrosis score of adipose tissue correlates negatively with the body mass index and metabolic parameters. Inducers of browning/beiging adipocytes and adipokines, as well as modulations of matrix remodeling enzyme inhibitors, and associated gene regulators, are potential pharmacological targets for treating obesity.


Assuntos
Tecido Adiposo , Obesidade , Humanos , Obesidade/metabolismo , Obesidade/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Hipóxia/metabolismo , Transdução de Sinais , Resistência à Insulina
12.
Chem Pharm Bull (Tokyo) ; 72(10): 845-855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39358209

RESUMO

Obesity is a global medical issue that can be effectively treated by relieving adipose inflammation and subsequent insulin resistance. Diosgenin (DIOS) has various effects as a steroidal saponin in inflammatory disorders. This study explored the effects and mechanism of DIOS on adipose inflammation and insulin sensitivity, both in silico and in vivo. The high-fat diet-induced obesity model in C57BL/6 mice was divided into five groups: normal chow (NC), high-fat diet (HFD), HFD with atorvastatin 10 mg/kg (AT), HFD with DIOS 100 mg/kg (DIOS 100), and HFD with DIOS 200 mg/kg (DIOS 200). Each group underwent an oral intervention for seven weeks. DIOS significantly suppressed weight gain in the body, liver, and epididymal fat pads. Additionally, it significantly improved fasting glucose and insulin levels, homeostatic model assessment of insulin resistance (HOMA-IR), and oral glucose tolerance test results, and reduced the proportion of total and M1 adipose tissue macrophages. Significant changes were shown in mRNA expression of janus kinase 2 (JAK2), insulin receptor (INRS), insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt), all of which exhibited high binding affinity in the in silico. Safety indices, including aspartate aminotransferase (AST), alanine transaminase (ALT), and creatinine level indicated the preventive effects of DIOS. In conclusion, DIOS improves insulin resistance and obesity-associated inflammation via the PI3K/Akt signaling pathway.


Assuntos
Dieta Hiperlipídica , Diosgenina , Resistência à Insulina , Camundongos Endogâmicos C57BL , Obesidade , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Diosgenina/farmacologia , Diosgenina/química , Diosgenina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Masculino
13.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396649

RESUMO

The dysregulation of the phosphatidylinositol-3-kinase (PI3K) pathway can lead to uncontrolled cellular growth and tumorigenesis. Targeting PI3K and its downstream substrates has been shown to be effective in preclinical studies and phase III trials with the approval of several PI3K pathway inhibitors by the Food and Drug Administration (FDA) over the past decade. However, the limited clinical efficacy of these inhibitors, intolerable toxicities, and acquired resistances limit the clinical application of PI3K inhibitors. This review discusses the PI3K signaling pathway, alterations in the PI3K pathway causing carcinogenesis, current and novel PI3K pathway inhibitors, adverse effects, resistance mechanisms, challenging issues, and future directions of PI3K pathway inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Carcinogênese/induzido quimicamente , Fosfatidilinositóis/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
14.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273113

RESUMO

Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na2WO4 promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na2WO4 increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na2WO4 increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na2WO4 on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na2WO4 were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na2WO4. These findings support the role of Na2WO4 in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.


Assuntos
Crescimento Neuronal , Fármacos Neuroprotetores , Compostos de Tungstênio , Humanos , Crescimento Neuronal/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Compostos de Tungstênio/farmacologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Neuroproteção/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Neuritos/metabolismo , Neuritos/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
15.
Artigo em Zh | MEDLINE | ID: mdl-39212067

RESUMO

Objective To investigate the effects of sakuranetin (SK) on motor functions in the mouse model of spinal cord injury (SCI) and decipher the mechanism.Methods Fifty-four C57BL/6J mice were randomized into sham,SCI,and SK groups.The mice in the sham group underwent only laminectomy at T9,while those in the SCI and SK groups were subjected to spinal cord contusion injury at T9.Behavioral tests were conducted at different time points after surgery to evaluate the motor functions of mice in each group.The pathological changes in the tissue were observed to assess the extent of SCI in each group.The role and mechanism of SK in SCI were predicted by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses.Reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence were employed to evaluate the inflammation and activation of microglia in SCI mice.BV2 cells in vitro were classified into control (Con),lipopolysaccharide (LPS),and LPS+SK groups.The effects of SK intervention on the release of inflammatory cytokines and the activation of BV2 cells were evaluated.Furthermore,the phosphatidylinositol-3-kinase(PI3K)/protein kinase B (AKT) signaling pathway activator insulin-like growth factor-1 (IGF-1) was used to treat the SK-induced BV2 cells in vitro (SK+IGF-1 group),and SK was used to treat the IGF-1-induced BV2 cells in vitro (IGF-1+SK group).Western blotting was conducted for molecular mechanism validation.Results Behavioral tests and histological staining results showed that compared with the SCI group,the SK group exhibited improved motor abilities and reduced area of damage in the spinal cord tissue (all P<0.001).The GO enrichment analysis predicted that SK may be involved in the inflammation following SCI.The KEGG enrichment analysis predicted that SK regulated the PI3K/Akt pathway to exert the neuroprotective effect.The results from in vitro and in vivo experiments showed that SK lowered the levels of tumor necrosis factor-α,interleukin-6,and interleukin-1ß and inhibited the activation of microglia (all P<0.05).The results of Western blotting showed that SK down-regulated the phosphorylation levels of PI3K and Akt (all P<0.001) and inhibited the IGF-1-induced elevation of PI3K and Akt phosphorylation levels (all P<0.001).Conversely,IGF-1 had the opposite effects (P=0.001,P<0.001).The results of reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence showed that the SK+IGF-1 group had higher levels of inflammatory cytokines and more activated microglia than the SK group(all P<0.05).Conclusion SK may suppress the activation of the PI3K/Akt pathway to inhibit the inflammation mediated by SCI-induced activation of microglia,ameliorate the pathological damage of the spinal cord tissue,and promote the recovery of motor functions in SCI mice.

16.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4329-4337, 2024 Aug.
Artigo em Zh | MEDLINE | ID: mdl-39307770

RESUMO

This study aims to investigate the mechanism of Xuanbai Chengqi Decoction in treating acute lung injury(ALI) based on network pharmacology and animal experiments. The potential targets and signaling pathways of Xuanbai Chengqi Decoction in regulating ALI were predicted by network pharmacology. The rat model of ALI was constructed and administrated with different doses of Xuanbai Chengqi Decoction. The pathological changes in the lung tissue of rats were observed by hematoxylin-eosin(HE) staining. The levels of interleukin-6(IL-6), interleukin-1ß(IL-1ß), and tumor necrosis factor-α(TNF-α) in the peripheral blood were measured by enzyme-linked immunosorbent assay(ELISA). The mRNA and protein levels of factors in the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway were determined by quantitative real-time PCR(qPCR) and Western blot, respectively. A total of 52 compounds from Xuanbai Chengqi Decoction were predicted to be involved in the treatment of ALI, including ß-sitosterol, emodin, stigmasterol, glabridin, and aloe-emodin, which corresponded to 112 targets,and 4 723 targets of ALI were predicted. The compounds and ALI shared 94 common targets. The key targets included TNF, IL-1ß,prostaglandin-endoperoxide synthase 2(PTGS2), and tumor protein 53(TP53). Lipids and atherosclerosis, p53 signaling pathway,IL-17 signaling pathway, and PI3K/Akt signaling pathway were mainly involved in the treatment. Animal experiments showed that compared with the model group, Xuanbai Chengqi Decoction alleviated the pathological changes in the lung tissue, lowered the serum levels of IL-6, IL-1ß, and TNF-α, down-regulated the mRNA and protein levels of PI3K, Akt, and mTOR, and reduced the p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR ratios in ALI rats. The results showed that Xuanbai Chengqi Decoction exerted its therapeutic effects on ALI via multiple components, targets, and pathways. Meanwhile, Xuanbai Chengqi Decoction may reduce the inflammation and attenuate the lung injuries of ALI rats by inhibiting the PI3K/Akt/mTOR signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Interleucina-1beta , Farmacologia em Rede , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Masculino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Artigo em Zh | MEDLINE | ID: mdl-38621909

RESUMO

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Assuntos
Isquemia Encefálica , Panax notoginseng , Fragmentos de Peptídeos , Receptores do Fator de Crescimento Derivado de Plaquetas , Saponinas , Triterpenos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Fator de von Willebrand , Angiogênese , Farmacologia em Rede , Ratos Sprague-Dawley , Saponinas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral
18.
J Cell Physiol ; 238(11): 2651-2667, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814842

RESUMO

Previous studies have suggested a role of phosphatidylinositol-3-kinase gamma (PI3Kγ) in bone remodeling, but the mechanism remains undefined. Here, we explored the contribution of PI3Kγ in the resorption of maxillary bone and dental roots using models of orthodontic tooth movement (OTM), orthodontic-induced inflammatory root resorption, and rapid maxillary expansion (RME). PI3Kγ-deficient mice (PI3Kγ-/- ), mice with loss of PI3Kγ kinase activity (PI3KγKD/KD ) and C57BL/6 mice treated with a PI3Kγ inhibitor (AS605240) and respective controls were used. The maxillary bones of PI3Kγ-/- , PI3KγKD/KD , and C57BL/6 mice treated with AS605240 showed an improvement of bone quality compared to their controls, resulting in reduction of the OTM and RME in all experimental groups. PI3Kγ-/- mice exhibited increased root volume and decreased odontoclasts counts. Consistently, the pharmacological blockade or genetic deletion of PI3K resulted in increased numbers of osteoblasts and reduction in osteoclasts during OTM. There was an augmented expression of Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (Alp), a reduction of interleukin-6 (Il-6), as well as a lack of responsiveness of receptor activator of nuclear factor kappa-Β (Rank) in PI3Kγ-/- and PI3KγKD/KD mice compared to control mice. The maxillary bones of PI3Kγ-/- animals showed reduced p-Akt expression. In vitro, bone marrow cells treated with AS605240 and cells from PI3Kγ-/- mice exhibited significant augment of osteoblast mineralization and less osteoclast differentiation. The PI3Kγ/Akt axis is pivotal for bone remodeling by providing negative and positive signals for the differentiation of osteoclasts and osteoblasts, respectively.


Assuntos
Reabsorção Óssea , Maxila , Animais , Camundongos , Maxila/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Remodelação Óssea , Fosfatidilinositóis/metabolismo
19.
BMC Cancer ; 23(1): 732, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553597

RESUMO

Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation often obtain de novo resistance or develop secondary resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs), which restricts the clinical benefit for the patients. The activation of phosphatidylinositol 3-kinase (PI3K)/AKT signal pathway is one of the most important mechanisms for the EGFR-TKIs resistance beyond T790M mutation. There are currently no drugs simultaneously targeting EGFR and PI3K signal pathways, and combination of these two pathway inhibitors may be a possible strategy to reverse theses resistances. To test whether this combinational strategy works, we investigated the therapeutic effects and mechanisms of combining BYL719, a PI3Kα inhibitor, with gefitinib, an EGFR-TKI inhibitor in EGFR-TKIs resistance NSCLC models induced by PI3K/AKT activation. Our results demonstrated that PIK3CA mutated cells showed increased growth rate and less sensitive or even resistant to gefitinib, associated with increased PI3K/AKT expression. The combination of BYL719 and gefitinib resulted in synergistic effect compared with the single agents alone in EGFR-mutated NSCLC cells with PI3K/AKT activation. The inhibition of AKT phosphorylation by BYL719 increased the antitumor efficacy of gefitinib in these cell lines. Moreover, the combined effect and mechanism of gefitinib and BYL719 were also confirmed in the NSCLC cells and patient-derived organoids under 3D culture condition, as well as in vivo. Taken together, the data indicate that PIK3CA mutation induces more aggressive growth and gefitinib resistance in NSCLC cells, and the combination treatment with gefitinib and BYL719 is a promising therapeutic approach to overcoming EGFR-TKIs resistance induced by PI3K/AKT activation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinase/genética , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Mutação
20.
Hematol Oncol ; 41(5): 848-857, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37496298

RESUMO

Parsaclisib is a potent and highly selective PI3Kδ inhibitor that has shown clinical benefit with monotherapy in a phase 2 study in relapsed or refractory (R/R) follicular lymphoma (FL). CITADEL-102 (NCT03039114), a phase 1, multicenter study, assessed the efficacy of parsaclisib in combination with obinutuzumab and bendamustine in patients with R/R FL. Patients were ≥18 years of age with histologically confirmed and documented CD20-positive FL, and R/R to previous rituximab-containing treatment regimens. Part one (safety run-in) determined the maximum tolerated dose of parsaclisib in combination with standard dosage regimens of obinutuzumab and bendamustine. Part two (dose expansion) was an open-label, single-group design evaluating safety, tolerability (primary endpoint), and efficacy (secondary endpoint) of parsaclisib combination therapy. Twenty-six patients were enrolled in CITADEL-102 and all patients received parsaclisib 20 mg once daily for 8 weeks, followed by 20 mg once weekly thereafter, in combination with obinutuzumab and bendamustine. One patient in safety run-in experienced a dose-limiting toxicity of grade 4 QT interval prolongation that was considered related to parsaclisib. Eight patients (30.8%) discontinued treatment due to treatment-emergent adverse events (TEAEs) of colitis (2 [7.7%]), alanine aminotransferase and aspartate aminotransferase increase (both in one patient [3.8%]), neutropenia, thrombocytopenia, QT prolongation, tonsil cancer, and maculopapular rash (each 1 [3.8%]). The most common reported TEAEs were pyrexia (53.8%), neutropenia (50.0%), and diarrhea (46.2%). Twenty-three patients (88.5%) experienced grade 3 or 4 TEAEs; the most common were neutropenia (34.6%), febrile neutropenia (23.1%), and thrombocytopenia (19.2%). Seventeen patients (65.4%) had a complete response and 3 patients (11.5%) had a partial response, for an objective response rate of 76.9%. Overall, results from CITADEL-102 suggest that the combination of parsaclisib with obinutuzumab and bendamustine did not result in unexpected safety events, with little evidence of synergistic toxicity, and demonstrated preliminary efficacy in patients with R/R FL who progressed following prior rituximab-containing regimens.


Assuntos
Linfoma Folicular , Neutropenia , Trombocitopenia , Humanos , Linfoma Folicular/patologia , Cloridrato de Bendamustina , Rituximab , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neutropenia/induzido quimicamente , Trombocitopenia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA