Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5436-5443, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656103

RESUMO

The ultrahigh surface area of two-dimensional materials can drive multimodal coupling between optical, electrical, and mechanical properties that leads to emergent dynamical responses not possible in three-dimensional systems. We observed that optical excitation of the WS2 monolayer above the exciton energy creates symmetrically patterned mechanical protrusions which can be controlled by laser intensity and wavelength. This observed photostrictive behavior is attributed to lattice expansion due to the formation of polarons, which are charge carriers dressed by lattice vibrations. Scanning Kelvin probe force microscopy measurements and density functional theory calculations reveal unconventional charge transport properties such as the spatially and optical intensity-dependent conversion in the WS2 monolayer from apparent n- to p-type and the subsequent formation of effective p-n junctions at the boundaries between regions with different defect densities. The strong opto-electrical-mechanical coupling in the WS2 monolayer reveals previously unexplored properties, which can lead to new applications in optically driven ultrathin microactuators.

2.
Small ; 18(7): e2106275, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35018720

RESUMO

Light-induced nonthermal strain, known as the photostrictive effect, offers a potential way to excite mechanical strain and acoustic wave remotely. The anisotropic photostrictive effect induced by the combination of bulk photovoltaic effect (BPVE) and converse piezoelectric effect in ferroelectric materials is known as too small and slow for the applications requiring a high strain rate, such as ultrasound generation and high-speed signal transmission. Here, a strategy to achieve high rate dynamic photostrictive strain by utilizing local fast responses under modulating continuous light excitation in the resonance condition is reported. A strain rate of 8.06 × 10-3  s-1 is demonstrated under continuous light excitation, which is at least one order of magnitude higher than previous studies on bulk samples as seen in the literature. The significant photostrictive response exists even in depoled ferroelectric material without overall polarization. The theoretical analyses show that fast ferroelectric photostriction can be obtained through the combinational interaction mechanism of local BPVE and local converse piezoelectric effect existing only in the microscopic scale, thus circumventing the slow and low efficient BPVE charging up process across the macroscopic electrical terminals. The achieved fast photostriction and new understandings will open new opportunities to realize future wireless signal transmission and light-acoustic devices.

3.
Proc Natl Acad Sci U S A ; 115(15): 3776-3781, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581284

RESUMO

We report the observation of a sizable photostrictive effect of 5.7% with fast, submillisecond response times, arising from a light-induced lattice dilation of a molecular nanosheet, composed of the molecular charge-transfer compound dibenzotetrathiafulvalene (DBTTF) and C60 An interfacial self-assembly approach is introduced for the thickness-controlled growth of the thin films. From photoabsorption measurements, molecular simulations, and electronic structure calculations, we suggest that photostriction within these films arises from a transformation in the molecular structure of constituent molecules upon photoinduced charge transfer, as well as the accommodation of free charge carriers within the material. Additionally, we find that the photostrictive properties of the nanosheets are thickness-dependent, a phenomenon that we suggest arises from surface-induced conformational disorder in the molecular components of the film. Moreover, because of the molecular structure in the films, which results largely from interactions between the constituent π-systems and the sulfur atoms of DBTTF, the optoelectronic properties are found to be anisotropic. This work enables the fabrication of 2D molecular charge-transfer nanosheets with tunable thicknesses and properties, suitable for a wide range of applications in flexible electronic technologies.

4.
Nano Lett ; 18(12): 7742-7748, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30407834

RESUMO

Photostriction, optical stimulus driven mechanical deformation in materials, provides a solution toward next-generation technology. Here, the giant photostriction (∼2% change of lattice) of epitaxial strontium iridate (SrIrO3) films under illumination at room temperature is revealed via power-dependent Raman scattering, which is significantly larger as compared to conventional inorganic materials. The time scale and mechanism of this giant photostriction in SrIrO3 are further studied through time-resolved transient reflectivity measurements. The main mechanism is determined to be the electron-phonon coupling. In addition, we find that such an exotic behavior happens within few picoseconds and remains up to 107 cyclic on/off operations. The observation of giant photostriction in SrIrO3 films with superior endurance promises the advance of shape responsive solids that are sensitive to environmental stimuli, which could be widely utilized for multifunctional optoelectronics and optomechanical devices.

5.
Sci Technol Adv Mater ; 16(4): 046001, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877827

RESUMO

This article reviews the history of piezoelectric perovskites and forecasts future development trends, including Uchino's discoveries such as the Pb(Mg1/3Nb2/3)O3-PbTiO3 electrostrictor, Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal, (Pb, La)(Zr, Ti)O3 photostriction, and Pb(Zr, Ti)O3-Terfenol magnetoelectric composites. We discuss five key trends in the development of piezomaterials: performance to reliability, hard to soft, macro to nano, homo to hetero, and single to multi-functional.

6.
Adv Mater ; 36(27): e2310198, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546029

RESUMO

Complex oxides offer a wide range of functional properties, and recent advances in the fabrication of freestanding membranes of these oxides are adding new mechanical degrees of freedom to this already rich functional ecosystem. Here, photoactuation is demonstrated in freestanding thin film resonators of ferroelectric Barium Titanate (BaTiO3) and paraelectric Strontium Titanate (SrTiO3). The free-standing films, transferred onto perforated supports, act as nano-drums, oscillating at their natural resonance frequency when illuminated by a frequency-modulated laser. The light-induced deflections in the ferroelectric BaTiO3 membranes are two orders of magnitude larger than in the paraelectric SrTiO3 ones. Time-resolved X-ray micro-diffraction under illumination and temperature-dependent holographic interferometry provide combined evidence for the photostrictive strain in BaTiO3 originating from a partial screening of ferroelectric polarization by photo-excited carriers, which decreases the tetragonality of the unit cell. These findings showcase the potential of photostrictive freestanding ferroelectric films as wireless actuators operated by light.

7.
ACS Appl Mater Interfaces ; 16(26): 33752-33762, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38902888

RESUMO

The sensitivity of ferroelectric domain walls to external stimuli makes them functional entities in nanoelectronic devices. Specifically, optically driven domain reconfiguration with in-plane polarization is advantageous and thus is highly sought. Here, we show the existence of in-plane polarized subdomains imitating a single domain state and reversible optical control of its domain wall movement in a single-crystal of ferroelectric BaTiO3. Similar optical control in the domain configuration of nonpolar ferroelastic material indicates that long-range ferroelectric polarization is not essential for the optical control of domain wall movement. Instead, flexoelectricity is found to be an essential ingredient for the optical control of the domain configuration, and hence, ferroelastic materials would be another possible candidate for nanoelectronic device applications.

8.
ACS Appl Mater Interfaces ; 13(2): 2642-2653, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405505

RESUMO

Hybrid organic-inorganic perovskites are highly promising candidates for the upcoming generation of single- and multijunction solar cells. Despite their extraordinarily good semiconducting properties, there is a need to increase the intrinsic material stability against heat, moisture, and light exposure. Understanding how variations in synthesis affect the bulk and surface stability is therefore of paramount importance to achieve a rapid commercialization on large scales. In this work, we show for the case of methylammonium lead iodide that a thorough control of the methylammonium iodide (MAI) partial pressure during co-evaporation is essential to limit photostriction and reach phase purity, which dictate the absorber stability. Kelvin probe force microscopy measurements in ultrahigh vacuum corroborate that off-stoichiometric absorbers prepared with an excess of MAI partial pressure exhibit traces of low-dimensional (two-dimensional, 2D) perovskites and stacking faults that have adverse effects on the intrinsic material stability. Under optimized growth conditions, time-resolved photoluminescence and work functions mapping corroborate that the perovskite films are less prone to heat and light degradation.

9.
ACS Appl Mater Interfaces ; 13(27): 32263-32269, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34213319

RESUMO

It is well known that the lattice structure for a crystal can be manipulated through mechanical strain, temperature, an electric field, a magnetic field, and light. In the past, the photostriction commonly occurs at the surface and the bulk photostriction is very small in most semiconductors. Here, the 532 nm laser can excite the excess electron-hole pairs in the surface layer and consequently these carriers diffuse in the millimeter-thick MAPbBr3-xIx crystal and introduce a giant bulk photostriction of 0.17, 0.28, and 0.35% for the 0.5 mm-thick MAPbBr3-xIx single crystals at x = 0, 1, and 2, respectively. Furthermore, the displacement of each crystal linearly increases from hundreds of picometers to several micrometers when the light intensity increases from about 0.2 to 536 mW/cm2. Since both the maximum strain and the displacement accuracy are as good as those of PZT ceramics used in piezoelectric actuators, these crystals can be used in light-driven actuators for precise positioning.

10.
Ultramicroscopy ; 194: 215-220, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30179755

RESUMO

Laser beam (He-Ne - 6328 A0) induced deflection in uncoated, Au, and Al coated Si microcantilevers (MCs) of various dimensions was studied, using an AFM head, to examine the induced stress contribution from photothermal and photostriction phenomenon. The laser beam was made to incident sequentially on front and back surfaces of the MC, by flipping it, and results were compared in terms of deflection magnitude, direction of bending and response time. In case of uncoated MCs, it was observed that the induced deflection was always in the direction of the incident laser beam with a fast response. In contrast, in metal (Au, Al) coated MCs, deflection direction was found to be dependent on laser beam exposure side with two orders of enhanced deflection sensitivity and slow response time. The former is attributed to photostriction effect while the latter is explained on the basis of photothermal effect in bimetallic MCs. Flipping experiments on bimettalic MCs, further revealed that stress contribution from these two source mechanisms crucially depends on MC dimensions and direction of laser exposure.

11.
Beilstein J Nanotechnol ; 9: 1695-1704, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977703

RESUMO

In this work, methylammonium lead tribromide (MAPbBr3) single crystals are studied by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). We demonstrate that the surface photovoltage and crystal photostriction can be simultaneously investigated by implementing a specific protocol based on the acquisition of the tip height and surface potential during illumination sequences. The obtained data confirm the existence of lattice expansion under illumination in MAPbBr3 and that negative photocarriers accumulate near the crystal surface due to band bending effects. Time-dependent changes of the surface potential occurring under illumination on the scale of a few seconds reveal the existence of slow ion-migration mechanisms. Lastly, photopotential decay at the sub-millisecond time scale related to the photocarrier lifetime is quantified by performing KPFM measurements under frequency-modulated illumination. Our multimodal approach provides a unique way to investigate the interplay between the charges and ionic species, the photocarrier-lattice coupling and the photocarrier dynamics in hybrid perovskites.

12.
Sensors (Basel) ; 7(9): 1713-1719, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28903192

RESUMO

A model for prediction the photostriction effect in silicon microcantilevers is built up based on the fundamentals of mechanics and semiconductor physics. By considering the spatial distribution and surface recombination of photoinduced carriers in silicon, the model interprets the cause of the photoinduced bending. The results from our model much more closely approximate the experimental values than the former model built up by Datskos, Rajic and Datskou [1](APL, Vol.73 (1998) No.16, pp 3219-2321), represented by the reduction of the error between calculation and measurement from 25 times to 0.85 times.

13.
Adv Mater ; 29(35)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28715093

RESUMO

Organic-inorganic hybrid perovskite materials exhibit a variety of physical properties. Pronounced coupling between phonon, organic cations, and the inorganic framework suggest that these materials exhibit strong light-matter interactions. The photoinduced strain of CH3 NH3 PbBr3 is investigated using high-resolution and contactless in situ Raman spectroscopy. Under illumination, the material exhibits large blue shifts in its Raman spectra that indicate significant structural deformations (i.e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation-rotation coupling. Unlike CH3 NH3 PbI3 , it is noted that the photostriction of CH3 NH3 PbBr3 is extremely stable, demonstrating no signs of optical decay for at least 30 d. These results suggest the potential of CH3 NH3 PbBr3 for applications in next-generation optical micro-electromechanical devices.

14.
Adv Mater ; 28(26): 5153-68, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27135419

RESUMO

Ferroelectrics carry a switchable spontaneous electric polarization. This polarization is usually coupled to strain, making ferroelectrics good piezoelectrics. When coupled to magnetism, they become so-called multiferroic systems, a field that has been widely investigated since 2003. While ferroelectrics are birefringent and non-linear optically transparent materials, the coupling of polarization with optical properties has received, since 2009, renewed attention, triggered notably by low-bandgap ferroelectrics suitable for sunlight spectrum absorption and original photovoltaic effects. Consequently, power conversion efficiencies up to 8.1% were recently achieved and values of 19.5% were predicted, making photoferroelectrics promising photovoltaic alternatives. This article aims at providing an up-to-date review on this emerging and rapidly progressing field by highlighting several important issues and parameters, such as the role of domain walls, ways to tune the bandgap, consequences arising from the polarization switchability, and the role of defects and contact electrodes, as well as the downscaling effects. Beyond photovoltaicity, other polarization-related processes are also described, like light-induced deformation (photostriction) or light-assisted chemical reaction (photostriction). It is hoped that this overview will encourage further avenues to be explored and challenged and, as a byproduct, will inspire other research communities in material science, e.g., so-called hybrid halide perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA