Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 593, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910247

RESUMO

BACKGROUND: Long-term continuous cropping has resulted in the frequent occurrence of fusarium wilt of watermelon (Citrullus lanatus). AMF inoculation can alleviate the continuous cropping barrier and reduce the incidence of fusarium wilt of watermelon. Our previous study found that the root exudates of mycorrhizal watermelon can enhance watermelon resistance to this disorder. It is necessary to further isolate and identify the specific compounds in root exudates of mycorrhizal watermelon and explore their control effects on fusarium wilt of continuous cropping watermelon. RESULT: The results of this study showed that the root system of watermelon seedlings inoculated with AMF (Funneliformis mosseae or Glomus versiforme) secreted diisooctyl phthalate (A) and dibutyl phthalate (B). Compared with water treatment, treatment with 0.1 ml/L (A1, B1), 0.5 ml/L (A2, B2) and 1 ml/L (A3, B3) of A or B significantly increased soil enzyme activities, the numbers of bacteria and actinomycetes, and the bacteria/fungi ratio in the rhizosphere. Furthermore, the Disease indexes (DI) of A1 and B3 were 25% and 20%, respectively, while the prevention and control effects (PCE) were 68.8% and 75%, respectively. In addition, diisooctyl phthalate or dibutyl phthalate increased the proportions of Gemmatimonadetes, Chloroflexi, and Acidobacteria in the rhizosphere of continuous cropping watermelon, and decreased the proportions of Proteobacteria and Firmicutes, with Novosphingobium, Kaistobacter, Bacillus, and Acinetobacter as the predominant bacteria. Compared with the water treatment, the abundance of Neosphingosaceae, Kateybacterium and Bacillus in the A1 group was increased by 7.33, 2.14 and 2.18 times, respectively, while that in the B2 group was increased by 60.05%, 80.24% and 1 time, respectively. In addition, exogenous diisooctyl phthalate and dibutyl phthalate were shown to promote growth parameters (vine length, stem diameter, fresh weight and dry weight) and antioxidant enzyme system activities (SOD, POD and CAT) of continuous cropping watermelon. CONCLUSION: Lower watermelon fusarium wilt incidence in mycorrhizal watermelons was associated with phthalate secretion in watermelons after AMF inoculation. Exogenous diisooctyl phthalate and dibutyl phthalate could alleviate the continuous cropping disorder of watermelon, reduce the incidence of fusarium wilt, and promote the growth of watermelon by increasing the enzyme activities and the proportion of beneficial bacteria in rhizosphere soil. In addition, the low concentration of phthalate diisooctyl and high concentration of phthalic acid dibutyl works best. Therefore, a certain concentration of phthalates in the soil can help alleviate continuous cropping obstacles.


Assuntos
Citrullus , Fusarium , Micorrizas , Ácidos Ftálicos , Doenças das Plantas , Raízes de Plantas , Microbiologia do Solo , Citrullus/microbiologia , Citrullus/crescimento & desenvolvimento , Micorrizas/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Ácidos Ftálicos/metabolismo , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Solo/química , Rizosfera
2.
Small ; 20(28): e2309519, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38299463

RESUMO

Aqueous solvents in Zn metal batteries inevitably induces hydrogen evolution reactions (HER) due to fluctuating pH levels in electrolytes, leading to severe side reactions and dendrite growth. To address these challenges, buffering agents have been recently proposed as a solution to maintain constant electrolyte pH values upon cycling. Nonetheless, the critical role of buffering additives' premier pH in determining interface stability is largely overlooked. Herein, two types of buffering agents, single amphoteric and conjugate acid-base pairs, are employed to correlate their initial pHs with the interface stability. Based on the observations, the lifetime of Zn metal anodes initially increases and then decreases as the initial pH level goes up from 2.0 to 5.0, with an optimal lifetime at pH 3.3 for both buffering agent categories. This phenomenon lies in ample H+ in low pH and rich OH- in high pH, leading to either severe HER or by-products passivation layer. The optimized pH allows cells to deliver a high average Coulombic efficiency of 99.61% over 1500 cycles at a large current density of 5 mA cm-2, which is significantly superior to 345 cycles achieved in the pristine electrolyte. Furthermore, this enhanced interface enables stable Zn/activated carbon full batteries over 15 000 cycles.

3.
Toxicol Appl Pharmacol ; 486: 116933, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631520

RESUMO

"White pollution" has a significant impact on male reproduction. Di-n-butyl phthalate (DBP) is one of the most important factors in this type of pollution. Currently, research from international sources has demonstrated the significant reproductive toxicity of DBP. However, most of these studies have focused mainly on hormones expression at the protein and mRNA levels and the specific molecular targets of DBP and its mechanisms of action remain unclear. In this study, we established a Sprague Dawley pregnant mouse model exposed to DBP, and all male offspring were immediately euthanized at birth and bilateral testes were collected. We found through transcriptome sequencing that cell apoptosis and MAPK signaling pathway are the main potential pathways for DBP induced reproductive toxicity. Molecular biology analyses revealed a significant increase in the protein levels of JNK1(MAPK8) and BAX, as well as a significant increase in the BAX/BCL2 ratio after DBP exposure. Therefore, we propose that DBP induces reproductive toxicity by regulating JNK1 expression to activate the MAPK signaling pathway and induce reproductive cell apoptosis. In conclusion, our study provides the first evidence that the MAPK signaling pathway is involved in DBP-induced reproductive toxicity and highlights the importance of JNK1 as a potential target of DBP in inducing reproductive toxicity.


Assuntos
Apoptose , Dibutilftalato , Sistema de Sinalização das MAP Quinases , Testículo , Animais , Masculino , Dibutilftalato/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Feminino , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Gravidez , Apoptose/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/genética
4.
Transfusion ; 64(5): 808-823, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590100

RESUMO

BACKGROUND: Phthalate chemicals are used to manufacture plastic medical products, including many components of cardiopulmonary bypass (CPB) circuits. We aimed to quantify iatrogenic phthalate exposure in pediatric patients undergoing cardiac surgery and examine the link between phthalate exposure and postoperative outcomes. STUDY DESIGN AND METHODS: The study included pediatric patients undergoing (n=122) unique cardiac surgeries at Children's National Hospital. For each patient, a single plasma sample was collected preoperatively and two additional samples were collected postoperatively upon return from the operating room and the morning after surgery. Concentrations of di(2-ethylhexyl) phthalate (DEHP) and its metabolites were quantified using ultra high-pressure liquid chromatography coupled to mass spectrometry. RESULTS: Patients were subdivided into three groups, according to surgical procedure: (1) cardiac surgery not requiring CPB support, (2) cardiac surgery requiring CPB with a crystalloid prime, and (3) cardiac surgery requiring CPB with red blood cells (RBCs) to prime the circuit. Phthalate metabolites were detected in all patients, and postoperative phthalate levels were highest in patients undergoing CPB with an RBC-based prime. Age-matched (<1 year) CPB patients with elevated phthalate exposure were more likely to experience postoperative complications. RBC washing was an effective strategy to reduce phthalate levels in CPB prime. DISCUSSION: Pediatric cardiac surgery patients are exposed to phthalate chemicals from plastic medical products, and the degree of exposure increases in the context of CPB with an RBC-based prime. Additional studies are warranted to measure the direct effect of phthalates on patient health outcomes and investigate mitigation strategies to reduce exposure.


Assuntos
Ponte Cardiopulmonar , Humanos , Ponte Cardiopulmonar/efeitos adversos , Feminino , Masculino , Pré-Escolar , Lactente , Criança , Dietilexilftalato/sangue , Prevalência , Plásticos , Ácidos Ftálicos/sangue , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Adolescente , Recém-Nascido
5.
Eur Biophys J ; 53(4): 225-238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613566

RESUMO

Calibration of titration calorimeters is an ongoing problem, particularly with calorimeters with reaction vessel volumes < 10 mL in which an electrical calibration heater is positioned outside the calorimetric vessel. Consequently, a chemical reaction with a known enthalpy change must be used to accurately calibrate these calorimeters. This work proposes the use of standard solutions of potassium acid phthalate (KHP) titrated into solutions of excess sodium hydroxide (NaOH) or excess tris(hydroxymethyl)aminomethane (TRIS) as standard reactions to determine the collective accuracy of the relevant variables in a determination of the molar enthalpy change for a reaction. KHP is readily available in high purity, weighable for easy preparation of solutions with accurately known concentrations, stable in solution, not compromised by side reactions with common contaminants such as atmospheric CO2, and non-corrosive to materials used in calorimeter construction. Molar enthalpy changes for these reactions were calculated from 0 to 60 °C from reliable literature data for the pKa of KHP, the molar enthalpy change for protonation of TRIS, and the molar enthalpy change for ionization of water. The feasibility of using these reactions as enthalpic standards was tested in several calorimeters; a 50 mL CSC 4300, a 185 µL NanoITC, a 1.4 mL VP-ITC, and a TAM III with 1 mL reaction vessels. The results from the 50 mL CSC 4300, which was accurately calibrated with an electric heater, verified the accuracy of the calculated standard values for the molar enthalpy changes of the proposed reactions.


Assuntos
Calorimetria , Hidróxido de Sódio , Trometamina , Hidróxido de Sódio/química , Calibragem , Trometamina/química , Temperatura , Padrões de Referência , Termodinâmica
6.
Environ Sci Technol ; 58(18): 7731-7742, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38662601

RESUMO

Plastics contaminations are found globally and fit the exposure profile of the planetary boundary threat. The plasticizer of dibutyl phthalate (DBP) leaching has occurred and poses a great threat to human health and the ecosystem for decades, and its toxic mechanism needs further comprehensive elucidation. In this study, environmentally relevant levels of DBP were used for exposure, and the developmental process, oxidative stress, mitochondrial ultrastructure and function, mitochondrial DNA (mtDNA) instability and release, and mtDNA-cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway with inflammatory responses were measured in zebrafish at early life stage. Results showed that DBP exposure caused developmental impairments of heart rate, hatching rate, body length, and mortality in zebrafish embryo. Additionally, the elevated oxidative stress damaged mitochondrial ultrastructure and function and induced oxidative damage to the mtDNA with mutations and instability of replication, transcription, and DNA methylation. The stressed mtDNA leaked into the cytosol and activated the cGAS-STING signaling pathway and inflammation, which were ameliorated by co-treatment with DBP and mitochondrial reactive oxygen species (ROS) scavenger, inhibitors of cGAS or STING. Furthermore, the larval results suggest that DBP-induced mitochondrial toxicity of energy disorder and inflammation were involved in the developmental defects of impaired swimming capability. These results enhance the interpretation of mtDNA stress-mediated health risk to environmental contaminants and contribute to the scrutiny of mitochondrial toxicants.


Assuntos
DNA Mitocondrial , Dibutilftalato , Peixe-Zebra , Animais , DNA Mitocondrial/efeitos dos fármacos , Dibutilftalato/toxicidade , Estresse Oxidativo/efeitos dos fármacos
7.
Environ Sci Technol ; 58(14): 6326-6334, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551364

RESUMO

Plastic additives, represented by plasticizers, are important components of plastic pollution. Biofilms inevitably form on plastic surfaces when plastic enters the aqueous environment. However, little is known about the effect of biofilms on plastic surfaces on the release of additives therein. In this study, PVC plastics with different levels of di(2-ethylhexyl)phthalate (DEHP) content were investigated to study the effect of biofilm growth on DEHP release. The presence of biofilms promoted the migration of DEHP from PVC plastics to the external environment. Relative to biofilm-free controls, although the presence of surface biofilm resulted in 0.8 to 11.6 times lower DEHP concentrations in water, the concentrations of the degradation product, monoethylhexyl phthalate (MEHP) in water, were 2.3 to 57.3 times higher. When the total release amounts of DEHP in the biofilm and in the water were combined, they were increased by 0.6-73 times after biofilm growth. However, most of the released DEHP was adsorbed in the biofilms and was subsequently degraded. The results of this study suggest that the biofilm as a new interface between plastics and the surrounding environment can affect the transport and transformation of plastic additives in the environment through barrier, adsorption, and degradation. Future research endeavors should aim to explore the transport dynamics and fate of plastic additives under various biofilm compositions as well as evaluate the ecological risks associated with their enrichment by biofilms.


Assuntos
Dietilexilftalato , Dietilexilftalato/metabolismo , Plastificantes , Biofilmes , Poluição Ambiental , Água , Plásticos
8.
Environ Sci Technol ; 58(8): 3726-3736, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353258

RESUMO

Mono(2-ethylhexyl) phthalate (MEHP), as a highly toxic and biologically active phthalate metabolite, poses considerable risks to the environment and humans. Despite the existence of in vitro studies, there is a lack of in vivo experiments assessing its toxicity, particularly thyroid toxicity. Herein, we investigated the thyroid-disrupting effects of MEHP and the effects on growth and development of maternal exposure to MEHP during pregnancy and lactation on the offspring modeled by SD rats. We found that thyroid hormone (TH) homeostasis was disrupted in the offspring, showing a decrease in total TH levels, combined with an increase in free TH levels. Nonhomeostasis ultimately leads to weight loss in female offspring, longer anogenital distance in male offspring, prolonged eye-opening times, and fewer offspring. Our findings indicate that maternal exposure to MEHP during pregnancy and lactation indirectly influences the synthesis, transport, transformation, and metabolism of THs in the offspring. Meanwhile, MEHP disrupted the morphology and ultrastructure of the thyroid gland, leading to TH disruption. This hormonal disruption might ultimately affect the growth and development of the offspring. This study provides a novel perspective on the thyroid toxicity mechanisms of phthalate metabolites, emphasizing the health risks to newborns indirectly exposed to phthalates and their metabolites.


Assuntos
Dietilexilftalato , Dietilexilftalato/análogos & derivados , Ácidos Ftálicos , Humanos , Gravidez , Masculino , Feminino , Animais , Ratos , Ratos Sprague-Dawley , Hormônios Tireóideos , Ácidos Ftálicos/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Lactação , Homeostase , Crescimento e Desenvolvimento
9.
Environ Sci Technol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140966

RESUMO

Diisobutyl phthalate (DiBP) is commonly used in the plastics industry, and recent studies have shown that environmental exposure and accumulation in the food chain caused inflammation in some organs. However, the underlying mechanisms by which DiBP affects oocyte quality have not yet been fully defined. We used immunostaining and fluorescence to evaluate the effects of DiBP exposure and demonstrated that it impaired the morphology of matured porcine oocytes through generation of cytoplasmic fragmentation, accompanied by the perturbed dynamics of the spindle and actin cytoskeleton, misdistributed endoplasmic reticulum, as well as partial exocytosis of cortical granules and ovastacin. Moreover, analysis of Smart RNA-seq found that DiBP-induced aberrant oocyte maturation could be induced by abnormal mitochondrial function and apoptosis. Importantly, we discovered that supplementation with pyrroloquinoline quinone (PQQ) significantly attenuated the meiotic abnormalities induced by DiBP exposure through the modulation of reactive oxygen species levels. Our findings demonstrated that DiBP exposure adversely affects oocyte meiotic maturation and that PQQ supplementation was an effective strategy to protect oocyte quality against DiBP exposure.

10.
Anal Bioanal Chem ; 416(19): 4301-4313, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852120

RESUMO

Phthalate plasticizers (PAEs) illegally used in food pose a great threat to human health. A new and efficient sensing platform for the sensitive detection of the PAE residues in biological fluids needs to be designed and developed. Here, we report a simple and reliable surface-enhanced Raman spectroscopy (SERS) active platform with extralong hot spots of Au nanobipyramids@Ag nanorods (Au NBPs@Ag NRs) for the rapid and sensitive detection of PAEs in biological fluids. To achieve high activity, Au NBPs@Ag NRs with different shell lengths were fabricated by controlling the synthesis conditions, and the corresponding SERS properties were investigated by using crystal violet (CryV) and butyl benzyl phthalate (BBP). The experimental results showed that a longer shell length correlated to greater Raman activity, which was confirmed by finite-difference time-domain (FDTD) electromagnetic simulation. More importantly, the extralong hot spots of the Au NBPs@Ag NR SERS-active substrate showed excellent homogeneity and reproducibility for the CryV probe molecules (6.21%), and the detection limit was 10-9 M for both BBP and diethylhexyl phthalate (DEHP). Furthermore, through the standard addition method, an extralong hot spots SERS substrate could achieve highly sensitive detection of BBP and DEHP in serum and tears fluids, and the detection limit was as low as 3.52 × 10-8 M and 2.82 × 10-8 M. Therefore, the Au NBPs@Ag NR substrate with an extraordinarily long surface is efficient and versatile, and can potentially be used for high-efficiency sensing analysis in complex biological fluids.


Assuntos
Ouro , Limite de Detecção , Ácidos Ftálicos , Plastificantes , Prata , Análise Espectral Raman , Lágrimas , Análise Espectral Raman/métodos , Ácidos Ftálicos/análise , Plastificantes/análise , Humanos , Ouro/química , Prata/química , Lágrimas/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Nanotubos/química
11.
Mol Biol Rep ; 51(1): 117, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227285

RESUMO

BACKGROUND: Exposure to benzyl butyl phthalate (BBP) may induce disorders in the male reproductive system. However, the molecular mechanisms remain unknown. Here we investigated the effect of BBP on testosterone production and its molecular mechanisms. Furthermore, we also investigated the role of gomisin N (GN) from Schisandra chinensis (S. chinensis) in testosterone synthesis in TM3 Leydig cells. METHOD AND RESULTS: First, we examined the effects of BBP on expression levels of testosterone biosynthesis-related genes (StAR, CYP11α1, CYP17α1, 3ßHSD, and 17ßHSD) and attenuation-related genes (CYP1ß1, CYP19α1, and Srd5α1-3). Although testosterone biosynthesis-related genes did not change, attenuation-related genes such as CYP1ß1 and CYP19α1 were upregulated with ROS generation and testosterone level attenuation in the presence of 50 µM of BBP. However, the compound with the highest ROS and ONOO- scavenging activity from S. chinensis, GN, significantly reversed the expression of BBP-induced testosterone attenuation-related gene to normal levels. Subsequently, GN improved the testosterone production levels in TM3 Leydig cells. These events may be regulated by the antioxidant effect of GN. CONCLUSIONS: On conclusion, our study suggests, for the first time, that BBP impairs testosterone synthesis by the modulation of CYP1ß1 and CYP19α1 expression in TM3 cells; GN could potentially minimize the BBP-induced dysfunction of TM3 cells to produce testosterone by suppressing CYP19α1 expression.


Assuntos
Células Intersticiais do Testículo , Lignanas , Ácidos Ftálicos , Compostos Policíclicos , Testosterona , Masculino , Humanos , Espécies Reativas de Oxigênio , Ciclo-Octanos
12.
Environ Res ; 257: 119403, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38871274

RESUMO

Commonly utilized as a plasticizer in the food and chemical sectors, Dibutyl phthalate (DBP) poses threats to the environment and human well-being as it seeps or moves into the surroundings. Nevertheless, research on the harmfulness of DBP to aquatic organisms is limited, and its impact on stem cells and tissue regeneration remains unidentified. Planarians, recognized for their robust regenerative capabilities and sensitivity to aquatic pollutants, are emerging animal models in toxicology. This study investigated the comprehensive toxicity effects of environmentally relevant levels of DBP on planarians. It revealed potential toxicity mechanisms through the use of immunofluorescence, chromatin dispersion assay, Western blot, quantitative real-time fluorescence quantitative PCR (qRT-PCR), chromatin behavioral and histological analyses, immunofluorescence, and terminal dUTP nickel-end labeling (TUNEL). Findings illustrated that DBP caused morphological and motor abnormalities, tissue damage, regenerative inhibition, and developmental neurotoxicity. Further research revealed increased apoptosis and suppressed stem cell proliferation and differentiation, disrupting a balance of cell proliferation and death, ultimately leading to morphological defects and functional abnormalities. This was attributed to oxidative stress and DNA damage caused by excessive release of reactive oxygen species (ROS). This exploration furnishes fresh perspectives on evaluating the toxicity peril posed by DBP in aquatic organisms.


Assuntos
Dibutilftalato , Planárias , Regeneração , Poluentes Químicos da Água , Animais , Dibutilftalato/toxicidade , Planárias/efeitos dos fármacos , Planárias/fisiologia , Poluentes Químicos da Água/toxicidade , Regeneração/efeitos dos fármacos , Ecotoxicologia , Estresse Oxidativo/efeitos dos fármacos , Plastificantes/toxicidade , Apoptose/efeitos dos fármacos
13.
Environ Res ; : 119755, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117051

RESUMO

BACKGROUND: Exposure to phthalates during the pubertal window impacts chronic disease risk and temporal trends in exposure can inform public health initiatives. OBJECTIVE: Characterize temporal trends in phthalate metabolite exposure for adolescent girls overall and by sociodemographic characteristics. METHODS: We used the cross-sectional data from each cycle of the National Health and Nutrition Examination Survey from years 2001 to 2018. We restricted participants to ages of 8-14 with at least one urinary measurement of the selected 12 phthalate metabolites within the study period (n=2,063). We used multivariable linear regression to assess temporal trends for selected individual phthalate metabolite concentrations (ng/ml) and source groupings of parent metabolites (sum low and high molecular weight phthalates; ∑LMW and ∑HMW) overall and individually by sociodemographic characteristics (race/ethnicity), nativity, socioeconomic status (SES), intersection of race/ethnicity-SES) to assess for modification. RESULTS: Overall ∑HMW and ∑LMW concentrations declined between 2001 and 2018; however, only ∑LMW consistently differed by all sociodemographic characteristics. Trends in ∑LMW concentration were significantly higher across all racial/ethnic groups, ranging from an average of 35% (Other Hispanic) to 65% (Mexican American and non-Hispanic Black) higher than non-Hispanic White (all p-values<0.0001). Compared to non-Hispanic White, we observed an average decrease of 15% in MiBP for non-Hispanic Black (ßSpline=-0.16, p<0.0001) and 28% for Other Hispanic (ßSpline=-0.33, p=0.01) in 2011-2018 vs. 2001-2010. Summary and individual LMW metabolite phthalate concentrations were 11%-49% higher among low vs. high SES girls. LMW metabolites MBP and MiBP were on average 22% and 35% higher; respectively, among foreign born vs. U.S. born. Compared to non-Hispanic Whites, all racial/ethnic groups had statistically significant higher trends in ∑LMW concentration irrespective of SES status. SIGNIFICANCE: Girls identifying with a historically disadvantaged racial/ethnic group have elevated ∑LMW concentrations irrespective of SES class; suggesting the need for interventions to mitigate exposure among the most historically disadvantaged strata.

14.
Environ Res ; 252(Pt 4): 119077, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714222

RESUMO

Household products, in response to regulations, increasingly incorporate phthalate (PAE) alternatives instead of traditional PAEs. However, limited information exists regarding the fate and exposure risk of these PAE alternatives and their monoesters in indoor environments. The contamination levels of PAE alternatives and their monoesters in indoor dust might vary across regions due to climate, population density, industrial activities, and interior decoration practices. By analyzing indoor dust samples from six geographical regions across China, this study aims to shed light on concentrations, profiles, and human exposure to 12 PAE alternatives and 9 their monoesters. Bis(2-ethylhexyl) benzene-1,4-dicarboxylate (DEHTP), tributyl 2-acetyloxypropane-1,2,3-tricarboxylate (ATBC), and tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate (TOTM) were the main PAE alternatives in dust across all regions. The total concentrations of 12 PAE alternatives ranged from 0.125 to 4160 µg/g in indoor dust. High molecular weight PAE alternatives had significantly correlated concentrations (p < 0.05) based on Spearman analysis, suggesting their co-use in heat-resistant plastic products. A collective of nine monoesters were identified in most samples, with total concentrations ranging from 0.048 to 29.6 µg/g. The median concentrations of PAE alternatives were highest in North China (66.8 µg/g), while those of monoesters were highest in Southwest China (6.93 µg/g). A significant correlation (p < 0.05) between the concentrations of DEHTP and its monoester suggested that degradation could be a potential source of monoesters. Although hazard quotients (HQs) have been calculated to suggest that the current exposure is unlikely to pose a significant health risk, the lack of toxicity threshold data and the existence of additional exposure pathways necessitate a further confirmation.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Ácidos Ftálicos , Poeira/análise , China , Ácidos Ftálicos/análise , Humanos , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise , Poluentes Atmosféricos/análise , Ésteres/análise , Monitoramento Ambiental
15.
Environ Res ; 247: 118221, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246300

RESUMO

As one of the endocrine-disrupting chemicals (EDCs), dibutyl phthalate (DBP) has been extensively used in industry. DBP has been shown to cause damage to Leydig cells, yet its underlying mechanism remains elusive. In this study, we show that DBP induces ferroptosis of mouse Leydig cells via upregulating the expression of Sp2, a transcription factor. Also, Sp2 is identified to promote the transcription of Vdac2 gene by binding to its promoter and subsequently involved in DBP-induced ferroptosis of Leydig cells. In addition, DBP is proved to induce ferroptosis via inducing oxidative stress, while inhibition of oxidative stress by melatonin alleviates DBP-induced ferroptosis and upregulation of Sp2 and VDAC2. Taken together, our findings demonstrate that melatonin can alleviate DBP-induced ferroptosis of mouse Leydig cells via inhibiting oxidative stress-triggered Sp2/VDAC2 signals.


Assuntos
Ferroptose , Melatonina , Camundongos , Masculino , Animais , Dibutilftalato/toxicidade , Células Intersticiais do Testículo/metabolismo , Testículo/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo
16.
Environ Res ; 248: 118234, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272296

RESUMO

This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 µg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 µg/L) and wet (114 µg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Água , Poluentes Químicos da Água/análise , Ésteres , Solo/química , Irã (Geográfico) , Ecossistema , Ácidos Ftálicos/química , Instalações de Eliminação de Resíduos
17.
Environ Res ; 258: 119465, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908658

RESUMO

In the United States and abroad, ortho-phthalates and non-ortho-phthalate plasticizers continue to be used within a diverse array of consumer products. Prior California-specific biomonitoring programs for ortho-phthalates have focused on rural, agricultural communities and, to our knowledge, these programs have not measured the potential for exposure to non-ortho-phthalate plasticizers. Therefore, the potential for human exposure to ortho-phthalates and non-ortho-phthalate plasticizers have not been adequately addressed in regions of California that have higher population density. Since there are numerous sources of ortho-phthalates and non-ortho-phthalate plasticizers in population-dense, urban regions, the objective of this study was to leverage silicone wristbands to quantify aggregate ortho-phthalate and non-ortho-phthalate plasticizer exposure over a 5-day period across two different cohorts (2019 and 2020) of undergraduate students at the University of California, Riverside (UCR) that commute from all over Southern California. Based on 5 d of aggregate exposure across two different cohorts, total ortho-phthalate plus non-ortho-phthalate plasticizer concentrations ranged, on average, from ∼100,000-1,000,000 ng/g. Based on the distribution of individual ortho-phthalate and non-ortho-phthalate plasticizer concentrations, the concentrations of di-isononyl phthalate (DiNP, a high molecular weight ortho-phthalate), di (2-ethylhexyl) phthalate (DEHP, a high molecular weight ortho-phthalate), and di-2-ethylhexyl terephthalate (DEHT, a non-ortho-phthalate plasticizer) detected within wristbands were higher than the remaining seven ortho-phthalates and non-ortho-phthalate plasticizers measured, accounting for approximately 94-97% of the total mass depending on the cohort. Overall, our findings raise concerns about chronic DiNP, DEHP, and DEHT exposure in urban, population-dense regions throughout California.


Assuntos
Exposição Ambiental , Ácidos Ftálicos , Plastificantes , Humanos , Plastificantes/análise , California , Ácidos Ftálicos/análise , Exposição Ambiental/análise , Silicones/química , Poluentes Ambientais/análise , Feminino , Masculino , Adulto Jovem , Monitoramento Ambiental/métodos , Punho , Adulto
18.
Environ Res ; 252(Pt 4): 119149, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754604

RESUMO

BACKGROUND: Phthalates are ubiquitous endocrine disruptors. Past studies have shown an association between higher preconception urinary concentrations of phthalate metabolites and lower fertility in women; however, the biological mechanisms remain unclear. Our exploratory study aimed to understand the metabolites and pathways associated with maternal preconception phthalate exposure and examine if any may underline the association between phthalate exposure and live birth using untargeted metabolomics. METHODS: Participants (n = 183) were part of the Environment and Reproductive Health (EARTH) study, a prospective cohort that followed women undergoing in vitro fertilization (IVF) at the Massachusetts General Hospital Fertility Center (2005-2016). On the same day, women provided a serum sample during controlled ovarian stimulation, which was analyzed for metabolomics using liquid chromatography coupled with high-resolution mass spectrometry and two chromatography columns, and a urine sample, which was analyzed for 11 phthalate metabolites using targeted approaches. We used multivariable generalized linear models to identified metabolic features associated with urinary phthalate metabolite concentrations and live birth, followed by enriched pathway analysis. We then used a meet-in-the-middle approach to identify overlapping pathways and features. RESULTS: Metabolic pathway enrichment analysis revealed 43 pathways in the C18 negative and 32 pathways in the HILIC positive columns that were significantly associated (p < 0.05) with at least one of the 11 urinary phthalate metabolites or molar sum of di-2-ethylhexyl phthalate metabolites. Lipid, amino acid, and carbohydrate metabolism were the most common pathways associated with phthalate exposure. Five pathways, tryptophan metabolism, tyrosine metabolism, biopterin metabolism, carnitine shuttle, and vitamin B6 metabolism, were also identified as being associated with at least one phthalate metabolite and live birth following IVF. CONCLUSION: Our study provides further insight into the metabolites and metabolomics pathways, including amino acid, lipid, and vitamin metabolism that may underlie the observed associations between phthalate exposures and lower fertility in women.


Assuntos
Nascido Vivo , Metaboloma , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/urina , Ácidos Ftálicos/sangue , Feminino , Adulto , Metaboloma/efeitos dos fármacos , Estudos Prospectivos , Poluentes Ambientais/urina , Poluentes Ambientais/sangue , Gravidez , Disruptores Endócrinos/urina , Disruptores Endócrinos/sangue , Exposição Materna , Massachusetts
19.
Environ Res ; 260: 119588, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019136

RESUMO

The extensive use of plasticizers in various industries has made Diethyl phthalate (DEP), a serious threat to the environment and ecological water security, owing to its complex-structure and low-biodegradability. Thus, the present study aimed to design a sustainable sand-coated nano glutathione (GSH) -Fe3O4-loaded/activated carbon (AC) bionanocomposite (AC-GSH-Fe3O4@sand bionanocomposite) for effective removal of DEP from water. Characterization results suggested bionanocomposites' rough and irregular texture due to the uneven distribution of AC and Fe3O4 nanoparticles over the sand. The XRD spectra indicated high crystallinity of bionanocomposites, while the FTIR spectra confirmed the presence of all individual components, i.e., GSH, AC, Fe3O4, and sand. EDX-mapping, AFM, and TGA further verified its elemental composition, topographical changes and thermal stability. The influence of pH (3, 7, 9), bed height (2, 4, 6) cm, and flow rate (2.5, 3.5, 4.5) mL min-1 were studied in a dynamic system with an initial DEP concentration of 50 mg L-1 to investigate the removal behavior of the bionanocomposites. The best DEP removal efficiency (90.18 %) was achieved over 28-h at pH 9, bed-height-4 cm, and flow-rate-3.5 mL min-1, with an optimum qmax-200.25 mg g-1 as determined through Thomas-model. Breakthrough curves were predicted using various column models, and the corresponding parameters essential for column-reactor process design were calculated. The high reusability up to the 10th cycle (≥83.32%) and the effective treatment in complex matrices (tap-water: 90.11 %, river-water: 89.72 %, wastewater: 83.83%) demonstrated bionanocomposites' prominent sustainability. Additionally, the production cost at 6.64 USD per Kg, underscores its potentiality for industrial application. Phytotoxicity assessment on mung-bean revealed better root (5.02 ± 0.27 cm) and shoot (17.64 ± 0.35 cm) growth in the bionanocomposite-treated DEP samples over the untreated samples. Thus, AC-GSH-Fe3O4@sand bionanocomposites could be considered a highly-sustainable, low-cost technique for the effective removal of DEP and other phthalate-esters from contaminated matrices.

20.
Appl Microbiol Biotechnol ; 108(1): 276, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536521

RESUMO

The massive usage of phthalate esters (PAEs) has caused serious pollution. Bacterial degradation is a potential strategy to remove PAE contamination. So far, an increasing number of PAE-degrading strains have been isolated, and the catabolism of PAEs has been extensively studied and reviewed. However, the investigation into the bacterial PAE uptake process has received limited attention and remains preliminary. PAEs can interact spontaneously with compounds like peptidoglycan, lipopolysaccharides, and lipids on the bacterial cell envelope to migrate inside. However, this process compromises the structural integrity of the cells and causes disruptions. Thus, membrane protein-facilitated transport seems to be the main assimilation strategy in bacteria. So far, only an ATP-binding-cassette transporter PatDABC was proven to transport PAEs across the cytomembrane in a Gram-positive bacterium Rhodococcus jostii RHA1. Other cytomembrane proteins like major facilitator superfamily (MFS) proteins and outer membrane proteins in cell walls like FadL family channels, TonB-dependent transporters, and OmpW family proteins were only reported to facilitate the transport of PAEs analogs such as monoaromatic and polyaromatic hydrocarbons. The functions of these proteins in the intracellular transport of PAEs in bacteria await characterization and it is a promising avenue for future research on enhancing bacterial degradation of PAEs. KEY POINTS: • Membrane proteins on the bacterial cell envelope may be PAE transporters. • Most potential transporters need experimental validation.


Assuntos
Ácidos Ftálicos , Ácidos Ftálicos/metabolismo , Proteínas de Membrana Transportadoras , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/metabolismo , Ésteres , Dibutilftalato/química , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA