Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2213887120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669098

RESUMO

Massive DNA excision occurs regularly in ciliates, ubiquitous microbial eukaryotes with somatic and germline nuclei in the same cell. Tens of thousands of internally eliminated sequences (IESs) scattered throughout the ciliate germline genome are deleted during the development of the streamlined somatic genome. The genus Blepharisma represents one of the two high-level ciliate clades (subphylum Postciliodesmatophora) and, unusually, has dual pathways of somatic nuclear and genome development. This makes it ideal for investigating the functioning and evolution of these processes. Here we report the somatic genome assembly of Blepharisma stoltei strain ATCC 30299 (41 Mbp), arranged as numerous telomere-capped minichromosomal isoforms. This genome encodes eight PiggyBac transposase homologs no longer harbored by transposons. All appear subject to purifying selection, but just one, the putative IES excisase, has a complete catalytic triad. We hypothesize that PiggyBac homologs were ancestral excisases that enabled the evolution of extensive natural genome editing.


Assuntos
Cilióforos , Paramecium tetraurellia , Edição de Genes , Genoma , Cilióforos/genética , Paramecium tetraurellia/metabolismo , Núcleo Celular/metabolismo , DNA de Protozoário/genética
2.
Exp Cell Res ; 435(1): 113902, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145818

RESUMO

In vitro differentiation of stem cells into various cell lineages is valuable in developmental studies and an important source of cells for modelling physiology and pathology, particularly for complex tissues such as the brain. Conventional protocols for in vitro neuronal differentiation often suffer from complicated procedures, high variability and low reproducibility. Over the last decade, the identification of cell fate-determining transcription factors has provided new tools for cellular studies in neuroscience and enabled rapid differentiation driven by ectopic transcription factor expression. As a proneural transcription factor, Neurogenin 2 (Ngn2) expression alone is sufficient to trigger rapid and robust neurogenesis from pluripotent cells. Here, we established a stable cell line, by piggyBac (PB) transposition, that conditionally expresses Ngn2 for generation of excitatory neurons from mouse embryonic stem cells (ESCs) using an all-in-one PB construct. Our results indicate that Ngn2-induced excitatory neurons have mature and functional characteristics consistent with previous studies using conventional differentiation methods. This approach provides an all-in-one PB construct for rapid and high copy number gene delivery of dox-inducible transcription factors to induce differentiation. This approach is a valuable in vitro cell model for disease modeling, drug screening and cell therapy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Neurônios/metabolismo , Linhagem Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Insect Mol Biol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129057

RESUMO

Anopheles stephensi Liston, 1901 (Diptera: culicidae) is a competent vector of Plasmodium falciparum (Haemosporida: plasmodiidae) malaria, and its expansion in the African continent is of concern due to its viability in urban settings and resistance to insecticides. To enhance its genetic tractability, we determined the utility of a ~2 kb An. stephensi lipophorin (lp) promoter fragment in driving transgene expression. Lipophorin genes are involved in lipid transport in insects, and an orthologous promoter in An. gambiae (AGAP001826) was previously demonstrated to successfully express a transgene. In the present study, we qualitatively characterised the expression of a ZsYellow fluorescent marker protein, expressed by An. stephensi lp promoter fragment. Our study indicated that the lp promoter fragment was effective, generating a distinct expression pattern in comparison to the commonly utilised 3xP3 promoter. The lp:ZsYellow fluorescence was largely visible in early instar larvae and appeared more intense in later instar larvae, pupae and adults, becoming especially conspicuous in adult females after a blood meal. Different isolines showed some variation in expression pattern and intensity. Aside from general transgene expression, as the lp promoter produces a suitable fluorescent protein marker expression pattern, it may facilitate genotypic screening and aid the development of more complex genetic biocontrol systems, such as multi-component gene drives. This study represents an expansion of the An. stephensi genetic toolbox, an important endeavour to increase the speed of An. stephensi research and reach public health milestones in combating malaria.

4.
FASEB J ; 37(9): e23108, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37534940

RESUMO

Recent advances in gene therapy have brought novel treatment options for cancer. However, the full potential of this approach has yet to be unlocked due to the limited payload capacity of commonly utilized viral vectors. Virus-free DNA transposons, including piggyBac, have the potential to obviate these shortcomings. In this study, we improved a previously modified piggyBac system with superior transposition efficiency. We demonstrated that the internal domain sequences (IDS) within the 3' terminal repeat domain of hyperactive piggyBac (hyPB) donor vector contain dominant enhancer elements. Plasmid-free donor vector devoid of IDS was used in conjunction with a helper plasmid expressing Quantum PBase™ v2 to generate an optimal piggyBac system, Quantum pBac™ (qPB), for use in T cells. qPB outperformed hyPB in CD20/CD19 CAR-T production in terms of performance as well as yield of the CAR-T cells produced. Furthermore, qPB also produced CAR-T cells with lower donor-associated variabilities compared to lentiviral vector. Importantly, qPB yielded mainly CD8+ CAR-TSCM cells, and the qPB-produced CAR-T cells effectively eliminated CD20/CD19-expressing tumor cells both in vitro and in vivo. Our findings confirm qPB as a promising virus-free vector system with an enhanced payload capacity to incorporate multiple genes. This highly efficient and potentially safe system will be expected to further advance gene therapy applications.


Assuntos
Receptores de Antígenos Quiméricos , Elementos de DNA Transponíveis , Plasmídeos , Linfócitos T , Vetores Genéticos/genética , Terapia Genética
5.
Biotechnol Bioeng ; 121(5): 1503-1517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372658

RESUMO

The piggyBac transposon/transposase system has been explored for long-term, stable gene expression to execute genomic integration of therapeutic genes, thus emerging as a strong alternative to viral transduction. Most studies with piggyBac transposition have employed physical methods for successful delivery of the necessary components of the piggyBac system into the cells. Very few studies have explored polymeric gene delivery systems. In this short communication, we report an effective delivery system based on low molecular polyethylenimine polymer with lipid substitution (PEI-L) capable of delivering three components, (i) a piggyBac transposon plasmid DNA carrying a gene encoding green fluorescence protein (PB-GFP), (ii) a piggyBac transposase plasmid DNA or mRNA, and (iii) a 2 kDa polyacrylic acid as additive for transfection enhancement, all in a single complex. We demonstrate an optimized formulation for stable GFP expression in two model cell lines, MDA-MB-231 and SUM149 recorded till day 108 (3.5 months) and day 43 (1.4 months), respectively, following a single treatment with very low cell number as starting material. Moreover, the stability of the transgene (GFP) expression mediated by piggyBac/PEI-L transposition was retained following three consecutive cryopreservation cycles. The success of this study highlights the feasibility and potential of employing a polymeric delivery system to obtain piggyBac-based stable expression of therapeutic genes.


Assuntos
DNA , Técnicas de Transferência de Genes , Plasmídeos , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Transposases/genética , Transposases/metabolismo , Elementos de DNA Transponíveis/genética , Vetores Genéticos
6.
Cell Mol Life Sci ; 80(11): 321, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815732

RESUMO

Deep mutational scanning (DMS) makes it possible to perform massively parallel quantification of the relationship between genetic variants and phenotypes of interest. However, the difficulties in introducing large variant libraries into mammalian cells greatly hinder DMS under physiological states. Here, we developed two novel strategies for DMS library construction in mammalian cells, namely 'piggyBac-in vitro ligation' and 'piggyBac-in vitro ligation-PCR'. For the first strategy, we took the 'in vitro ligation' approach to prepare high-diversity linear dsDNAs, and integrate them into the mammalian genome with a piggyBac transposon system. For the second strategy, we further added a PCR step using the in vitro ligation dsDNAs as templates, for the construction of high-content genome-integrated libraries via large-scale transfection. Both strategies could successfully establish genome-integrated EGFP-chromophore-randomized libraries in HEK293T cells and enrich the green fluorescence-chromophore amino-acid sequences. And we further identified a novel transcriptional activator peptide with the 'piggyBac-in vitro ligation-PCR' strategy. Our novel strategies greatly facilitate the construction of large variant DMS library in mammalian cells, and may have great application potential in the future.


Assuntos
Elementos de DNA Transponíveis , Genômica , Animais , Humanos , Elementos de DNA Transponíveis/genética , Células HEK293 , Transfecção , Mutação/genética , Mamíferos/genética
7.
Genes Dev ; 30(24): 2724-2736, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087716

RESUMO

Ciliated protozoans perform extreme forms of programmed somatic DNA rearrangement during development. The model ciliate Tetrahymena thermophila removes 34% of its germline micronuclear genome from somatic macronuclei by excising thousands of internal eliminated sequences (IESs), a process that shares features with transposon excision. Indeed, piggyBac transposon-derived genes are necessary for genome-wide IES excision in both Tetrahymena (TPB2 [Tetrahymena piggyBac-like 2] and LIA5) and Paramecium tetraurelia (PiggyMac). T. thermophila has at least three other piggyBac-derived genes: TPB1, TPB6, and TPB7 Here, we show that TPB1 and TPB6 excise a small, distinct set of 12 unusual IESs that disrupt exons. TPB1-deficient cells complete mating, but their progeny exhibit slow growth, giant vacuoles, and osmotic shock sensitivity due to retention of an IES in the vacuolar gene DOP1 (Dopey domain-containing protein). Unlike most IESs, TPB1-dependent IESs have piggyBac-like terminal inverted motifs that are necessary for excision. Transposon-like excision mediated by TPB1 and TPB6 provides direct evidence for a transposon origin of not only IES excision machinery but also IESs themselves. Our study highlights a division of labor among ciliate piggyBac-derived genes, which carry out mutually exclusive categories of excision events mediated by either transposon-like features or RNA-directed heterochromatin.


Assuntos
Elementos de DNA Transponíveis/genética , Rearranjo Gênico/genética , Genes de Protozoários/genética , Genoma de Protozoário/genética , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Estágios do Ciclo de Vida , Proteínas de Protozoários/genética , Tetrahymena thermophila/crescimento & desenvolvimento , Vacúolos/genética
8.
Genesis ; 61(3-4): e23510, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36748563

RESUMO

Transposon systems are widely used for genetic engineering in various model organisms. PiggyBac (PB) has recently been confirmed to have highly efficient transposition in the mouse germ line and mammalian cell lines. In this study, we used a modified PB transposon system mediated by PB transposase (PBase) mRNA carrying the human lactoferrin gene driven by bovine ß-casein promoter to transfect bovine mammary epithelial cells (BMECs), and the selectable reporter in two stable transgenic BMEC clones was removed using cell-permeant Cre recombinase. These reporter-free transgenic BMECs were used as donor cells for somatic cell nuclear transfer (SCNT) and exhibited a competence of SCNT embryos similar to stable transgenic BMECs and nontransgenic BMECs. The comprehensive information from this study provided a modified approach using an altered PB transposon system mediated by PBase mRNA in vitro and combined with the Cre/loxP system to produce transgenic and selectable reporter-free donor nuclei for SCNT. Consequently, the production of safe bovine mammary bioreactors can be promoted.


Assuntos
Glândulas Mamárias Animais , Animais , Bovinos , Elementos de DNA Transponíveis , Células Epiteliais , Glândulas Mamárias Animais/metabolismo , Técnicas de Transferência Nuclear , RNA Mensageiro/genética
9.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36205081

RESUMO

Although new genes can arrive from modes other than duplication, few examples are well characterized. Given high expression in some human brain subregions and a putative link to psychological disorders [e.g., schizophrenia (SCZ)], suggestive of brain functionality, here we characterize piggyBac transposable element-derived 1 (PGBD1). PGBD1 is nonmonotreme mammal-specific and under purifying selection, consistent with functionality. The gene body of human PGBD1 retains much of the original DNA transposon but has additionally captured SCAN and KRAB domains. Despite gene body retention, PGBD1 has lost transposition abilities, thus transposase functionality is absent. PGBD1 no longer recognizes piggyBac transposon-like inverted repeats, nonetheless PGBD1 has DNA binding activity. Genome scale analysis identifies enrichment of binding sites in and around genes involved in neuronal development, with association with both histone activating and repressing marks. We focus on one of the repressed genes, the long noncoding RNA NEAT1, also dysregulated in SCZ, the core structural RNA of paraspeckles. DNA binding assays confirm specific binding of PGBD1 both in the NEAT1 promoter and in the gene body. Depletion of PGBD1 in neuronal progenitor cells (NPCs) results in increased NEAT1/paraspeckles and differentiation. We conclude that PGBD1 has evolved core regulatory functionality for the maintenance of NPCs. As paraspeckles are a mammal-specific structure, the results presented here show a rare example of the evolution of a novel gene coupled to the evolution of a contemporaneous new structure.


Assuntos
Elementos de DNA Transponíveis , RNA Longo não Codificante , Animais , Núcleo Celular/genética , Histonas/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Proteínas do Tecido Nervoso , Paraspeckles , RNA Longo não Codificante/metabolismo , Transposases/genética , Transposases/metabolismo
10.
Cancer Immunol Immunother ; 72(4): 957-968, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36214866

RESUMO

CD19-specific chimeric antigen receptor T (CAR T) immunotherapy is used to treat B-cell malignancies. However, antigen-escape mediated relapse following CAR T therapy has emerged as a major concern. In some relapsed cases, especially KMT2A rearrangement-positive B-acute lymphoblastic leukemia (KMT2A-r B-ALL), most of the B-cell antigens are lost via lineage conversion to the myeloid phenotype, rendering multi-B-cell-antigen-targeted CAR T cell therapy ineffective. Fms-related tyrosine kinase-3 (FLT3) is highly expressed in KMT2A-r B-ALL; therefore, in this study, we aimed to evaluate the antitumor efficacy of CAR T cells targeting both CD19 and FLT3 in KMT2A-r B-ALL cells. We developed piggyBac transposon-mediated CAR T cells targeting CD19, FLT3, or both (dual) and generated CD19-negative KMT2A-r B-ALL models through CRISPR-induced CD19 gene-knockout (KO). FLT3 CAR T cells showed antitumor efficacy against CD19-KO KMT2A-r B-ALL cells both in vitro and in vivo; dual-targeted CAR T cells showed cytotoxicity against wild-type (WT) and CD19-KO KMT2A-r B-ALL cells, whereas CD19 CAR T cells demonstrated cytotoxicity only against WT KMT2A-r B-ALL cells in vitro. Therefore, targeting FLT3-specific CAR T cells would be a promising strategy for KMT2A-r B-ALL cells even with CD19-negative relapsed cases.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Antígenos CD19/genética , Tirosina Quinase 3 Semelhante a fms/genética , Imunoterapia , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Proteína de Leucina Linfoide-Mieloide/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo
11.
Cytotherapy ; 25(4): 397-406, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36517366

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T cell is a novel therapy for relapse and refractory hematologic malignancy. Characteristics of CAR T cells are associated with clinical efficacy and toxicity. The type of serum supplements used during cultivation affects the immunophenotype and function of viral-based CAR T cells. This study explores the effect of serum supplements on nonviral piggyBac transposon CAR T-cell production. METHODS: PiggyBac CD19 CAR T cells were expanded in cultured conditions containing fetal bovine serum, human AB serum or xeno-free serum replacement. We evaluated the effect of different serum supplements on cell expansion, transduction efficiency, immunophenotypes and antitumor activity. RESULTS: Xeno-free serum replacement exhibited comparable CAR surface expression, cell expansion and short-term antitumor activity compared with conventional serum supplements. However, CAR T cells cultivated with xeno-free serum replacement exhibited an increased naïve/stem cell memory population and better T-cell expansion after long-term co-culture as well as during the tumor rechallenge assay. CONCLUSIONS: Our study supports the usage of xeno-free serum replacement as an alternative source of serum supplements for piggyBac-based CAR T-cell expansion.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Recidiva Local de Neoplasia , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19
12.
Zoolog Sci ; 40(2): 83-90, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042688

RESUMO

Herpesviruses are a large family of DNA viruses infecting vertebrates and invertebrates, and are important pathogens in the field of aquaculture. In general, herpesviruses do not have the ability to integrate into the host genomes since they do not have a chromosomal integration step in their life cycles. Recently, we identified a novel group of herpesviruses, "Teratorn" and its related elements, in the genomes of various teleost fish species. At least some of the Teratorn-like herpesviruses are fused with a piggyBac-like DNA transposon, suggesting that they have acquired the transposon-like intragenomic lifestyle by hijacking the transposon system. In this review, we describe the sequence characteristics of Teratorn-like herpesviruses and phylogenetic relationships with other herpesviruses. Then we discuss the process of transposon-herpesvirus fusion, their life cycle, and the generality of transposon-virus fusion. Teratorn-like herpesviruses provide a piece of concrete evidence that even non-retroviral elements can become intragenomic parasites retaining replication capacity, by acquiring transposition machinery from other sources.


Assuntos
Herpesviridae , Animais , Filogenia , Herpesviridae/genética , Elementos de DNA Transponíveis , Peixes/genética
13.
Int J Clin Oncol ; 28(6): 736-747, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36859566

RESUMO

Since the introduction of the use of chimeric antigen receptor T-cell therapy (CAR-T therapy) dramatically changed the therapeutic strategy for B cell tumors, various CAR-T cell products have been developed and applied to myeloid and solid tumors. Although viral vectors have been widely used to produce genetically engineered T cells, advances in genetic engineering have led to the development of methods for producing non-viral, gene-modified CAR-T cells. Recent progress has revealed that non-viral CAR-T cells have a significant impact not only on the simplicity of the production process and the accessibility of non-viral vectors but also on the function of the cells themselves. In this review, we focus on piggyBac-transposon-based CAR-T cells among non-viral, gene-modified CAR-T cells and discuss their characteristics, preclinical development, and recent clinical applications.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Neoplasias/patologia , Linfócitos T , Imunoterapia Adotiva/métodos
14.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894833

RESUMO

Creating transgenic insects is a key technology in insect genetics and molecular biology. A widely used instrument in insect transgenesis is the piggyBac transposase, resulting in essentially random genomic integrations. In contrast, site-specific recombinases allow the targeted integration of the transgene construct into a specific genomic target site. Both strategies, however, often face limitations due to low transgenesis efficiencies. We aimed to enhance transgenesis efficiencies by utilizing capped mRNA as a source of transposase or recombinase instead of a helper plasmid. A systematic comparison of transgenesis efficiencies in Aedes mosquitoes, as models for hard-to-transform insects, showed that suppling piggyBac transposase as mRNA increased the average transformation efficiency in Aedes aegypti from less than 5% with the plasmid source to about 50% with mRNA. Similar high activity was observed in Ae. albopictus with pBac mRNA. No efficiency differences between plasmid and mRNA were observed in recombination experiments. Furthermore, a hyperactive version of piggyBac transposase delivered as a plasmid did not improve the transformation efficiency in Ae. aegypti or the agricultural pest Drosophila suzukii. We believe that the use of mRNA has strong potential for enhancing piggyBac transformation efficiencies in other mosquitoes and important agricultural pests, such as tephritids.


Assuntos
Aedes , Transposases , Animais , Transposases/genética , Transposases/metabolismo , Animais Geneticamente Modificados/genética , Plasmídeos/genética , Drosophila/genética , Insetos/metabolismo , Aedes/genética , Aedes/metabolismo , Elementos de DNA Transponíveis/genética
15.
Rinsho Ketsueki ; 64(9): 1184-1191, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37899199

RESUMO

Chimeric antigen receptor transgenic T cell (CAR-T) therapy targeting the CD19 antigen was approved for relapsed/refractory acute lymphocytic leukemia in the United States in 2017 and in Japan in 2019. Despite the excellent efficacy of CAR-T therapy, the relapse rate is about 50%. To reduce this rate, it will be important to examine predictive factors for relapse and which patients should receive hematopoietic cell transplantation. In addition, as the high cost of CAR-T cells has become a financial toxicity that threatens the health insurance system in many countries, development of less expensive CAR-T products using non-viral vectors is also underway.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Antígenos CD19 , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Imunoterapia Adotiva , Linfócitos T , Recidiva , Receptores de Antígenos de Linfócitos T/genética
16.
Rinsho Ketsueki ; 64(5): 418-426, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37271534

RESUMO

The clinical application of chimeric antigen receptor T-cell therapy (CAR-T therapy) has significantly altered the therapeutic strategy for B-cell tumors and is now being used to treat myeloid and solid tumors. Nonetheless, the efficacy of CAR-T cell therapy for myeloid and solid tumors has been limited, and several studies are being conducted to understand and overcome the underlying mechanisms. Recent research achievements have revealed that the properties of CAR-T cells, particularly their memory function, which can be continuously amplified in the body without exhaustion after administration, are closely related to CAR-T cell clinical efficacy. Furthermore, because the characteristics of CAR-T cells are greatly influenced by the quality of peripheral blood mononuclear cells, the raw material of CAR-T cells, and the T-cell used during the manufacturing process, attention has been drawn to the development of high-quality CAR-T cell manufacturing methods and combination therapies that maintain CAR-T cell memory function and suppress immune exhaustion. This article provides an overview of the current state of CAR-T cell development and clinical application to cancer, particularly emphasizing the development of manufacturing processes and efforts to improve CAR-T cell efficacy in combination therapy with molecular-targeting drugs.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Leucócitos Mononucleares/patologia , Imunoterapia Adotiva/métodos , Linfócitos T , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética
17.
FASEB J ; 35(2): e21359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496003

RESUMO

The ability and efficiency of targeted nucleases to perform sequence replacements or insertions into the genome are limited. This limited efficiency for sequence replacements or insertions can be explained by the dependency on DNA repair pathways, the possibility of cellular toxicity, and unwanted activation of proto-oncogenes. The piggyBac (PB) transposase uses a very efficient enzymatic mechanism to integrate DNA fragments into the genome in a random manner. In this study, we fused an RNA-guided catalytically inactive Cas9 (dCas9) to the PB transposase and used dual sgRNAs to localize this molecule to specific genomic targets. We designed and used a promoter/reporter complementation assay to register and recover cells harboring-specific integrations, where only by complementation upon correct genomic integration, the reporter can be activated. Using an RNA-guided piggyBac transposase and dual sgRNAs, we were able to achieve site-directed integrations in the human ROSA26 safe harbor region in 0.32% of cells. These findings show that the methodology used in this study can be used for targeting genomic regions. An application for this finding could be in cancer cells to insert sequences into specific target regions that are intended to be destroyed, or to place promoter cargos behind the tumor suppressor genes to activate them.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Introdução de Genes/métodos , Proteína 9 Associada à CRISPR/metabolismo , Genes Reporter , Células HEK293 , Humanos , Mutagênese Insercional , RNA Guia de Cinetoplastídeos/metabolismo , Transposases/genética , Transposases/metabolismo
18.
RNA Biol ; 19(1): 353-363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35289721

RESUMO

Circular RNAs (circRNAs) are a class of non-coding RNAs featuring a covalently closed ring structure formed through backsplicing. circRNAs are broadly expressed and contribute to biological processes through a variety of functions. Standard gain-of-function and loss-of-function approaches to study gene functions have significant limitations when studying circRNAs. Overexpression studies in particular suffer from the lack of efficient genetic tools. While mammalian expression plasmids enable transient circRNA overexpression in cultured cells, most cell biological studies require long-term ectopic expression. Here we report the development and characterization of genetic tools enabling stable circRNA overexpression in vitro and in vivo. We demonstrated that circRNA expression constructs can be delivered to cultured cells via transposons, whereas lentiviral vectors have limited utility for the delivery of circRNA constructs due to viral RNA splicing in virus-producing cells. We further demonstrated ectopic circRNA expression in a hepatocellular carcinoma mouse model upon circRNA transposon delivery via hydrodynamic tail vein injection. Furthermore, we generated genetically engineered mice harbouring circRNA expression constructs. We demonstrated that this approach enables constitutive, global circRNA overexpression as well as inducible circRNA expression directed specifically to melanocytes in a melanoma mouse model. These tools expand the genetic toolkit available for the functional characterization of circRNAs.


Assuntos
MicroRNAs , RNA Circular , Animais , Mamíferos/genética , Camundongos , MicroRNAs/genética , RNA/genética , RNA/metabolismo , Splicing de RNA , RNA Viral/genética
19.
Proc Natl Acad Sci U S A ; 116(37): 18507-18516, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451639

RESUMO

Genome-wide phenotypic screens provide an unbiased way to identify genes involved in particular biological traits, and have been widely used in lower model organisms. However, cost and time have limited the utility of such screens to address biological and disease questions in mammals. Here we report a highly efficient piggyBac (PB) transposon-based first-generation (F1) dominant screening system in mice that enables an individual investigator to conduct a genome-wide phenotypic screen within a year with fewer than 300 cages. The PB screening system uses visually trackable transposons to induce both gain- and loss-of-function mutations and generates genome-wide distributed new insertions in more than 55% of F1 progeny. Using this system, we successfully conducted a pilot F1 screen and identified 5 growth retardation mutations. One of these mutants, a Six1/4 PB/+ mutant, revealed a role in milk intake behavior. The mutant animals exhibit abnormalities in nipple recognition and milk ingestion, as well as developmental defects in cranial nerves V, IX, and X. This PB F1 screening system offers individual laboratories unprecedented opportunities to conduct affordable genome-wide phenotypic screens for deciphering the genetic basis of mammalian biology and disease pathogenesis.


Assuntos
Mapeamento Cromossômico/métodos , Elementos de DNA Transponíveis/genética , Genoma , Técnicas de Genotipagem/métodos , Mutagênese Insercional/métodos , Animais , Animais Recém-Nascidos , Mapeamento Cromossômico/economia , Modelos Animais de Doenças , Embrião de Mamíferos , Estudos de Viabilidade , Feminino , Retardo do Crescimento Fetal/genética , Fibroblastos , Técnicas de Genotipagem/economia , Humanos , Masculino , Camundongos/genética , Camundongos Transgênicos , Mutagênese Insercional/economia , Mutação , Fenótipo , Cultura Primária de Células
20.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142241

RESUMO

The piggyBac DNA transposon is an active element initially isolated from the cabbage looper moth, but members of this superfamily are also present in most eukaryotic evolutionary lineages. The functionally important regions of the transposase are well described. There is an RNase H-like fold containing the DDD motif responsible for the catalytic DNA cleavage and joining reactions and a C-terminal cysteine-rich domain important for interaction with the transposon DNA. However, the protein also contains a ~100 amino acid long N-terminal disordered region (NTDR) whose function is currently unknown. Here we show that deletion of the NTDR significantly impairs piggyBac transposition, although the extent of decrease is strongly cell-type specific. Moreover, replacing the NTDR with scrambled but similarly disordered sequences did not rescue transposase activity, indicating the importance of sequence conservation. Cell-based transposon excision and integration assays reveal that the excision step is more severely affected by NTDR deletion. Finally, bioinformatic analyses indicated that the NTDR is specific for the piggyBac superfamily and is also present in domesticated, transposase-derived proteins incapable of catalyzing transposition. Our results indicate an essential role of the NTDR in the "fine-tuning" of transposition and its significance in the functions of piggyBac-originated co-opted genes.


Assuntos
DNA Catalítico , Transposases , Cisteína/genética , Elementos de DNA Transponíveis/genética , DNA Catalítico/metabolismo , Ribonuclease H/metabolismo , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA