Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 76: 1-19, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395169

RESUMO

My path in science began with a fascination for microbiology and phages and later involved a switch of subjects to the fungus Ustilago maydis and how it causes disease in maize. I will not provide a review of my work but rather focus on decisive findings, serendipitous, lucky moments when major advances made the U. maydis-maize system what it is now-a well-established model for biotrophic fungi. I also want to share with you the joy of finding the needle in a haystack at the very end of my scientific career, a fungal structure likely used for effector delivery, and how we were able to translate this into a potential application in agriculture.


Assuntos
Bacteriófagos , Neoplasias , Ustilago , Proteínas Fúngicas , Humanos , Doenças das Plantas/microbiologia , Virulência , Zea mays/microbiologia
2.
BMC Genomics ; 25(1): 56, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216891

RESUMO

The genomes of species belonging to the genus Colletotrichum harbor a substantial number of cytochrome P450 monooxygenases (CYPs) encoded by a broad diversity of gene families. However, the biological role of their CYP complement (CYPome) has not been elucidated. Here, we investigated the putative evolutionary scenarios that occurred during the evolution of the CYPome belonging to the Colletotrichum Graminicola species complex (s.c.) and their biological implications. The study revealed that most of the CYPome gene families belonging to the Graminicola s.c. experienced gene contractions. The reductive evolution resulted in species restricted CYPs are predominant in each CYPome of members from the Graminicola s.c., whereas only 18 families are absolutely conserved among these species. However, members of CYP families displayed a notably different phylogenetic relationship at the tertiary structure level, suggesting a putative convergent evolution scenario. Most of the CYP enzymes of the Graminicola s.c. share redundant functions in secondary metabolite biosynthesis and xenobiotic metabolism. Hence, this current work suggests that the presence of a broad CYPome in the genus Colletotrichum plays a critical role in the optimization of the colonization capability and virulence.


Assuntos
Colletotrichum , Colletotrichum/genética , Colletotrichum/metabolismo , Filogenia , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Hospedeiro-Patógeno/genética , Genoma
3.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38802124

RESUMO

AIMS: Anthracnose caused by Colletotrichum species is one of the most devastating diseases of fruits and crops. We isolated and identified an antifungal compound from the mushroom Coprinus comatus and investigated its inhibitory potential against anthracnose disease-causing fungi with the goal of discovering natural products that can suppress anthracnose-caused plant disease. METHODS AND RESULTS: The culture filtrate of C. comatus was subjected to a bioassay-guided isolation of antifungal compounds. The active compound was identified as orsellinaldehyde (2,4-dihydroxy-6-methylbenzaldehyde) based on mass spectroscopy and nuclear magnetic resonance analyses. Orsellinaldehyde displayed broad-spectrum inhibitory activity against different plant pathogenic fungi. Among the tested Colletotrichum species, it exhibited the lowest IC50 values on conidial germination and germ tube elongation of Colletotrichum orbiculare. The compound also showed remarkable inhibitory activity against Colletotrichum gloeosporiodes. The staining of Colletotrichum conidia with fluorescein diacetate and propidium iodide demonstrated that the compound is fungicidal. The postharvest in-vivo detached fruit assay indicated that orsellinaldehyde suppressed anthracnose lesion symptoms on mango and cucumber fruits caused by C. gloeosporioides and C. orbiculare, respectively. CONCLUSIONS: Orsellinaldehyde was identified as a potent antifungal compound from the culture filtrate of C. comatus. The inhibitory and fungicidal activities of orsellinaldehyde against different Colletotrichum species indicate its potential as a fungicide for protecting various fruits against anthracnose disease-causing fungi.


Assuntos
Colletotrichum , Coprinus , Doenças das Plantas , Colletotrichum/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Benzaldeídos/farmacologia , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Esporos Fúngicos/efeitos dos fármacos
4.
BMC Microbiol ; 23(1): 356, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980509

RESUMO

BACKGROUND: Plant fungal pathogens cause substantial economic losses through crop yield reduction and post-harvest storage losses. The utilization of biocontrol agents presents a sustainable strategy to manage plant diseases, reducing the reliance on hazardous chemical. Recently, Pichia kudriavzevii has emerged as a promising biocontrol agent because of its capacity to inhibit fungal growth, offering a potential solution for plant disease management. RESULTS: Two novel Pichia kudriavzevii strains, Pk_EgyACGEB_O1 and Pk_EgyACGEB_O2, were isolated from olive brine samples. The microscopic characterization of the strains revealed similar structures. However, there were noticeable differences in their visual morphology. Based on their internal transcribed spacer (ITS) DNA sequences, Pk_EgyACGEB_O1 and Pk_EgyACGEB_O2 strains assigned by GenBank IDs MZ507552.1 and MZ507554.1 shared high sequence similarity (~ 99.8% and 99.5%) with P. kudriavzevii, respectively. Both strains were evaluated in vitro against plant pathogenic fungi. The strains revealed the ability to consistently inhibit fungal growth, with Pk_EgyACGEB_O2 showing higher effectiveness. In addition, both P. kudriavzevii strains effectively controlled grey mold disease caused by B. cinerea in golden delicious apples, suggesting their potential as sustainable and eco-friendly biocontrol agents for post-harvest diseases. Based on a comprehensive bioinformatics pipeline, candidate-secreted proteins responsible for the potent antifungal activity of P. kudriavzevii were identified. A total of 59 proteins were identified as common among the P. kudriavzevii CBS573, SD108, and SD129 strains. Approximately 23% of the secreted proteins in the P. kudriavzevii predicted secretome are hydrolases with various activities, including proteases, lipases, glycosidases, phosphatases, esterases, carboxypeptidases, or peptidases. In addition, a set of cell-wall-related proteins was identified, which might enhance the biocontrol activity of P. kudriavzevii by preserving the structure and integrity of the cell wall. A papain inhibitor was also identified and could potentially offer a supplementary defense against plant pathogens. CONCLUSION: Our results revealed the biocontrol capabilities of P. kudriavzevii against plant pathogenic fungi. The research focused on screening novel strains for their ability to inhibit the growth of common pathogens, both in vitro and in vivo. This study shed light on how P. kudriavzevii interacts with fungal pathogens. The findings can help develop effective strategies for managing plant diseases.


Assuntos
Micoses , Pichia , Pichia/genética , Pichia/metabolismo , Antifúngicos/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
5.
Arch Microbiol ; 206(1): 38, 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38142438

RESUMO

Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.


Assuntos
Ascomicetos , Micovírus , Micoses , Vírus , Fungos , Micoses/microbiologia , Plantas , Micovírus/fisiologia , Doenças das Plantas/microbiologia
6.
Arch Microbiol ; 205(4): 140, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964826

RESUMO

A macrolide antibiotic, lasiodiplodin was isolated from the endophytic fungus (EF) Lasiodiplodia pseudotheobromae J-10 associated with the medicinal plant Sarcandra glabra. In vitro antifungal assay demonstrated the inhibitory activity of lasiodiplodin against the growth of six phytopathogenic fungi, with the IC50 values ranging between 15.50 and 52.30 µg/mL. The highest antifungal activities were recorded against Exserohilum turcicum, Colletotrichum capsici, and Pestalotiopsis theae, with IC50 values of 15.50, 15.90, and 17.55 µg/mL, respectively. The underlying mechanism of the antifungal activity of lasiodiplodin against E. turcicum included the alteration of its colony morphology and disturbance of its cell membrane integrity. In addition, the optimization of L. pseudotheobromae J-10 culture conditions increased lasiodiplodin yield to 52.33 mg/L from 0.59 mg/L at pre-optimization. This is the first report on the isolation and identification of antifungal compound from the EF L. pseudotheobromae J-10 associated with S. glabra, as well as on the optimization of L. pseudotheobromae J-10 culture conditions to increase lasiodiplodin yield. The results of this study support that lasiodiplodin is a natural compound with high potential bioactivity against phytopathogens, and provide a basis for further study of the EF associated with S. glabra.


Assuntos
Plantas Medicinais , Zearalenona , Antifúngicos/farmacologia , Zearalenona/farmacologia
7.
Mar Drugs ; 21(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132922

RESUMO

In this work, we extracted chitosan from marine amphipods associated with aquaculture facilities and tested its use in crop protection. The obtained chitosan was 2.5 ± 0.3% of initial ground amphipod dry weight. The chemical nature of chitosan from amphipod extracts was confirmed via Raman scattering spectroscopy and Fourier transform infrared spectroscopy (FTIR). This chitosan showed an 85.7-84.3% deacetylation degree. Chitosan from biofouling amphipods at 1 mg·mL-1 virtually arrested conidia germination (ca. sixfold reduction from controls) of the banana wilt pathogenic fungus Fusarium oxysporum f. sp cubense Tropical Race 4 (FocTR4). This concentration reduced (ca. twofold) the conidia germination of the biocontrol fungus Pochonia chlamydosporia (Pc123). Chitosan from amphipods at low concentrations (0.01 mg·mL-1) still reduced FocTR4 germination but did not affect Pc123. This is the first time that chitosan is obtained from biofouling amphipods. This new chitosan valorizes aquaculture residues and has potential for biomanaging the diseases of food security crops such as bananas.


Assuntos
Anfípodes , Quitosana , Fusarium , Musa , Animais , Musa/microbiologia , Quitosana/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fungos
8.
Fungal Genet Biol ; 161: 103712, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667520

RESUMO

Plant-pathogenic fungi span diverse taxonomic lineages. Their host-infection strategies are often specialised and require the coordinated regulation of molecular virulence factors. Transcription factors (TFs) are fundamental regulators of gene expression, yet relatively few virulence-specific regulators are characterised in detail and their evolutionary trajectories are not well understood. Hence, this study compared the full range of TFs across taxonomically-diverse fungal proteomes and classified their lineages through an orthology analysis. The primary aims were to characterise differences in the range and profile of TF lineages broadly linked to plant-host association or pathogenic lifestyles, and to better characterise the evolutionary origin and trajectory of experimentally-validated virulence regulators. We observed significantly fewer TFs among obligate, host-associated pathogens, largely attributed to contractions in several Zn2Cys6 TF-orthogroup lineages. We also present novel insight into the key virulence-regulating TFs Ste12, Pf2 and EBR1, providing evidence for their ancestral origins, expansion and/or loss. Ultimately, the analysis presented here provides both primary evidence for TF evolution in fungal phytopathogenicity, as well as a practical phylogenetic resource to guide further detailed investigation on the regulation of virulence within key pathogen lineages.


Assuntos
Fungos , Fatores de Transcrição , Fungos/metabolismo , Filogenia , Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
9.
Cell Microbiol ; 23(1): e13272, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32978997

RESUMO

Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.


Assuntos
Fungos/fisiologia , Fungos/patogenicidade , Interações entre Hospedeiro e Microrganismos , Evasão da Resposta Imune , Micoses/imunologia , Plantas/microbiologia , Adaptação Fisiológica , Animais , Humanos , Doenças das Plantas/microbiologia , Virulência
10.
J Appl Microbiol ; 133(4): 2314-2330, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35880359

RESUMO

Tea (Camellia sinensis (L) O. Kuntze) is a long-duration monoculture crop prone to several biotic (fungal diseases and insect pest) and abiotic (nutrient deficiency, drought and salinity) stress that eventually result in extensive annual crop loss. The specific climatic conditions and the perennial nature of the tea crop favour growth limiting abiotic factors, numerous plant pathogenic fungi (PPF) and insect pests. The review focuses on the susceptibility of tea crops to PPF/pests, drought, salinity and nutrient constraints and the potential role of beneficial actinobacteria in promoting tea crop health. The review also focuses on some of the major PPF associated with tea, such as Exobasidium vexans, Pestalotiopsis theae, Colletotrichum acutatum, and pests (Helopeltis theivora). The phylum actinobacteria own a remarkable place in agriculture due to the biosynthesis of bioactive metabolites that assist plant growth by direct nutrient assimilation, phytohormone production, and by indirect aid in plant defence against PPF and pests. The chemical diversity and bioactive significance of actinobacterial metabolites (antibiotics, siderophore, volatile organic compounds, phytohormones) are valuable in the agro-economy. This review explores the recent history of investigations in the role of actinobacteria and its secondary metabolites as a biocontrol agent and proposes a commercial application in tea cultivation.


Assuntos
Actinobacteria , Camellia sinensis , Compostos Orgânicos Voláteis , Animais , Antibacterianos/metabolismo , Bactérias , Camellia sinensis/microbiologia , Insetos , Reguladores de Crescimento de Plantas/metabolismo , Sideróforos/metabolismo , Estresse Fisiológico , Chá , Compostos Orgânicos Voláteis/metabolismo
11.
Phytopathology ; 112(10): 2044-2051, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35502928

RESUMO

For many plant-pathogenic or endophytic fungi, production of mycotoxins, which are toxic to humans, may present a fitness gain. However, associations between mycotoxin production and plant pathogenicity or virulence is inconsistent and difficult due to the complexity of these host-pathogen interactions and the influences of environmental and insect factors. Aflatoxin receives a lot of attention due to its potent toxicity and carcinogenicity but the connection between aflatoxin production and pathogenicity is complicated by the pathogenic ability and prevalence of nonaflatoxigenic isolates in crops. Other toxins directly aid fungi in planta, trichothecenes are important virulence factors, and ergot alkaloids limit herbivory and fungal consumption due to insect toxicity. We review a panel discussion at the American Phytopathological Society's Plant Health 2021 conference, which gathered diverse experts representing different research sectors, career stages, ethnicities, and genders to discuss the diverse roles of mycotoxins in the lifestyles of filamentous fungi of the families Clavicipitaceae, Trichocomaceae (Eurotiales), and Nectriaceae (Hypocreales).


Assuntos
Aflatoxinas , Alcaloides de Claviceps , Micotoxinas , Tricotecenos , Ecossistema , Feminino , Fungos , Humanos , Masculino , Micotoxinas/toxicidade , Doenças das Plantas , Fatores de Virulência
12.
Pestic Biochem Physiol ; 188: 105246, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464333

RESUMO

Highly active and novel antifungal compounds are continuously researched from natural products for pesticide development. Picrasma quassioides (D. Don) Benn, a species of Simaroubaceae, is used in traditional Chinese medicine to treat colds and upper respiratory infections. In this study, the active ingredients of P. quassioides and their antifungal activities against plant pathogenic fungi are investigated to explore the practical application of the plant in the agricultural field. The results showed that the extracts of P. quassioides exhibited highly significant preventive and curative effects on apple valsa canker (AVC) with a reduction of lesion diameter were 80.28% and 83.63%, respectively, and can improve the resistance of apple trees to a pathogen. Five antifungal compounds, namely, canthin-6-one (T1), nigakinone (T2), 4,5-dimethoxycanthin-6-one (T3), 1-methoxycarbonyl-ß-carboline (T4), and 1-methoxycarbonyl-3-methoxyl-ß-carboline (T5), are isolated from P. quassioides using the bioassay-guided method. This is the first report of 1-methoxycarbonyl-3-methoxyl-ß-carboline as a natural product. Canthin-6-one shows strong in vitro inhibitory activity against 11 species of plant pathogenic fungi, and their EC50 values range from 1.49 to 8.80 mg/L. The control efficacy of canthin-6-one at 2000 mg/L are 87.88% and 94.37% against AVC and 80.10% and 84.73% against apple anthracnose (C. gloeosporioides), respectively. Additionally, V. mali is observed after treatment with cannin-6-one, although microscopic. This is the first study on the control of the secondary metabolites of P. quassioides against plant fungal diseases. The results show that P. quassioides is a potential resource for the development of botanical fungicides.


Assuntos
Alcaloides , Antineoplásicos , Produtos Biológicos , Malus , Picrasma , Antifúngicos/farmacologia , Fungos , Carbolinas
13.
Microb Ecol ; 82(1): 243-256, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33755773

RESUMO

Forests on steep slopes constitute a significant proportion of European mountain areas and are important as production and protection forests. This study describes the soil fungal community structure in a European beech-dominated mountain forest stands in the Northern Calcareous Alps and investigates how it is determined by season and soil properties. Samples were collected at high spatial resolution in an area of ca. 100 m × 700 m in May (spring) and August (summer). Illumina MiSeq high-throughput sequencing of the ITS2-region revealed distinct patterns for the soil fungal communities. In contrast to other studies from temperate European beech forest stands, Ascomycota dominated the highly diverse fungal community, while ectomycorrhizal fungi were of lower abundance. Russulaceae, which are often among the dominant ectomycorrhizal fungi associated with European beech, were absent from all samples. Potentially plant pathogenic fungi were more prevalent than previously reported. Only subtle seasonal differences were found between fungal communities in spring and summer. Especially, dominant saprotrophic taxa were largely unaffected by season, while slightly stronger effects were observed for ectomycorrhizal fungi. Soil characteristics like pH and organic carbon content, on the other hand, strongly shaped abundant taxa among the saprotrophic fungal community.


Assuntos
Fagus , Micorrizas , Florestas , Fungos/genética , Micorrizas/genética , Estações do Ano , Solo , Microbiologia do Solo
14.
Molecules ; 26(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401587

RESUMO

A series of tetrahydro-ß-carbolines substituted with an alkyl or acyl side chain was synthesized and screened for its antifungal activity against plant pathogenic fungi (Bipolaris oryzae, Curvularia lunata, Fusarium semitectum, and Fusarium fujikuroi). The structure activity relationship revealed that the substituent at the piperidine nitrogen plays an important role for increasing antifungal activities. In this series, 2-octyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3g) displayed potent antifungal activities with a minimum inhibitory concentration of 0.1 µg/mL, including good inhibitory activity to the radial growth of fungus at a concentration of 100 µg/mL compared to amphotericin B.


Assuntos
Antifúngicos , Bipolaris/crescimento & desenvolvimento , Carbolinas , Curvularia/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Carbolinas/síntese química , Carbolinas/química , Carbolinas/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
15.
Fungal Genet Biol ; 144: 103447, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827756

RESUMO

Fortunately, no fungus can cause disease on all plant species, and although some plant-pathogenic fungi have quite a broad host range, most are highly limited in the range of plant species or even cultivars that they cause disease in. The mechanisms of host specificity have been extensively studied in many plant-pathogenic fungi, especially in fungal pathogens causing disease on economically important crops. Specifically, genes involved in host specificity have been identified during the last few decades. In this overview, we describe and discuss these host-specificity genes. These genes encode avirulence (Avr) proteins, proteinaceous host-specific toxins or secondary metabolites. We discuss the genomic context of these genes, their expression, polymorphism, horizontal transfer and involvement in pathogenesis.


Assuntos
Fungos/genética , Especificidade de Hospedeiro/genética , Doenças das Plantas/genética , Plantas/genética , Proteínas Fúngicas/genética , Fungos/patogenicidade , Genômica , Doenças das Plantas/microbiologia , Plantas/microbiologia
16.
Pestic Biochem Physiol ; 163: 154-163, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973853

RESUMO

Paenibacillus elgii JCK1400 shows strong antifungal activity against various plant pathogenic fungi in vitro, but little is known about its mode of action. Four antifungal lipopeptides were isolated from P. elgii JCK1400 using bioassay-directed fractionation. Their chemical structures were determined to be pelgipeptins (PGPs) using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. Among the four lipopeptides, PGP-C showed the strongest mycelial growth inhibitory activity against several plant pathogenic fungi-with minimum inhibitory concentration (MIC) values ranging from 4 to 32 µg mL-1-followed by PGP-D, -A, and -B. In pot experiments, PGP-C also effectively suppressed the development of important fungal diseases in crops. In particular, PGP-C was effective in controlling tomato grey mold and wheat leaf rust, with control values of 91% and 73%, respectively, at a concentration of 125 µg mL-1. The fermentation broth of the antagonistic bacterium reduced the development of creeping bentgrass dollar spot and Kentucky bluegrass brown patch in a dose-dependent manner. However, our study on the effect of PGP-C on the fungal cell membrane-using microscopic observation with propidium iodide (PI) fluorescence-indicated that PGP-C does not target the fungal cell walls, but instead targets the cell membranes. This is the first study to report the in vitro and in vivo antifungal activity of PGP-C against various plant pathogenic fungi. Our results suggest that P. elgii JCK1400, which produces PGPs, could serve as a potential biocontrol agent for plant diseases caused by various fungi.


Assuntos
Antifúngicos , Paenibacillus , Fungos , Testes de Sensibilidade Microbiana , Doenças das Plantas , Espectrometria de Massas em Tandem
17.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290169

RESUMO

Fungi and oomycetes encompass many pathogens affecting crops worldwide. Their effective control requires screening pathogens across the local and international trade networks along with the monitoring of pathogen inocula in the field. Fundamentals to all of these concerns are their efficient detection, identification, and quantification. The use of molecular markers showed the best promise in the field of plant pathogen diagnostics. However, despite the unquestionable benefits of DNA-based methods, two significant limitations are associated with their use. The first limitation concerns the insufficient level of sensitivity due to the very low and uneven distribution of pathogens in plant material. The second limitation pertains to the inability of widely used diagnostic assays to detect cryptic species. Targeting mtDNA appears to provide a solution to these challenges. Its high copy number in microbial cells makes mtDNA an attractive target for developing highly sensitive assays. In addition, previous studies on different pathogen taxa indicated that mitogenome sequence variation could improve cryptic species delimitation accuracy. This review sheds light on the potential application of mtDNA for pathogen diagnostics. This paper covers a brief description of qPCR and DNA barcoding as two major strategies enabling the diagnostics of plant pathogenic fungi and oomycetes. Both strategies are discussed along with the potential use of mtDNA, including their strengths and weaknesses.


Assuntos
DNA Mitocondrial , Fungos/classificação , Fungos/genética , Oomicetos/classificação , Oomicetos/genética , Doenças das Plantas/microbiologia , Código de Barras de DNA Taxonômico , Genoma Mitocondrial , Genômica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
18.
Molecules ; 26(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374444

RESUMO

The metabolic pathways in the apicoplast organelle of Plasmodium parasites are similar to those in plastids in plant cells and are suitable targets for malaria drug discovery. Some phytotoxins released by plant pathogenic fungi have been known to target metabolic pathways of the plastid; thus, they may also serve as potential antimalarial drug leads. An EtOAc extract of the broth of the endophyte Botryosphaeria dothidea isolated from a seed collected from a Torreya taxifolia plant with disease symptoms, showed in vitro antimalarial and phytotoxic activities. Bioactivity-guided fractionation of the extract afforded a mixture of two known isomeric phytotoxins, FRT-A and flavipucine (or their enantiomers, sapinopyridione and (-)-flavipucine), and two new unstable γ-lactam alkaloids dothilactaenes A and B. The isomeric mixture of phytotoxins displayed strong phytotoxicity against both a dicot and a monocot and moderate cytotoxicity against a panel of cell lines. Dothilactaene A showed no activity. Dothilactaene B was isolated from the active fraction, which showed moderate in vitro antiplasmodial activity with high selectivity index. In spite of this activity, its instability and various other biological activities shown by related compounds would preclude it from being a viable antimalarial lead.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Ascomicetos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia , Antimaláricos/isolamento & purificação , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Plasmodium/efeitos dos fármacos , Sementes/química , Análise Espectral , Taxaceae/microbiologia , Toxinas Biológicas/isolamento & purificação
19.
Fungal Genet Biol ; 129: 52-64, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980908

RESUMO

Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.


Assuntos
Cromatina/genética , Código das Histonas , Doenças das Plantas/microbiologia , Ustilago/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/genética , Ustilago/enzimologia , Ustilago/patogenicidade , Virulência
20.
Bioorg Med Chem Lett ; 29(20): 126661, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31515187

RESUMO

To study the novel functionalized heterocyclic molecules with highly potential biological activity, two series of heterocyclic lactam derivatives containing the piperonyl moiety were designed and synthesized. The newly obtained compounds have been identified on the basis of analytical spectral data, including 1H NMR, 13C NMR, and ESI-MS. The target compounds were evaluated for their potential antifungal activities in vitro against twelve species of the plant pathogen fungi (Sclerotinia sclerotiorum, Rhizoctonia solani, Rap Sclerotinia stemrot, Fusarium graminearum, Phomopsis adianticola, Pestallozzia theae, Pestalotiopsis guepinii, Alternaria tenuis Nees, Monilinia fructicola, Colletotrichum gloeosporioides, Phytophthora capsici, Magnaporthe oryzae). Preliminary bioassays suggested that all prepared compounds I1-14 displayed broad-spectrum and moderate antifungal activities compared with the positive control hymexazol, especially for Sclerotinia sclerotiorum, Rap Sclerotinia stemrot, and Monilinia fructicola. In particular, the inhibition rate of compound I9 exhibited good inhibition activity reached 95.16% against Sclerotinia sclerotiorum, and compounds I5, I12 against Phytophthora capsici were 93.44%, 91.25%. Further studies revealed that compounds I5 (IC50 = 19.13 µM) and I12 (IC50 = 9.12 µM) exhibited obviously antifungal activities against Phytophthora capsici, which were better than that of commercial agricultural fungicide hymexazol (IC50 = 325.45 µM). Therefore, these target compounds could be further studied and explored as a lead skeleton for discovery of novel antifungal agents.


Assuntos
Antifúngicos/síntese química , Álcoois Benzílicos/química , Fungos/efeitos dos fármacos , Lactamas/síntese química , Doenças das Plantas/microbiologia , Antifúngicos/farmacologia , Desenho de Fármacos , Lactamas/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxazóis/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA