Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2403253, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860540

RESUMO

The electrochemical nitrate reduction reaction (NO3RR) is of significance in regards of environmentally friendly issues and green ammonia production. However, relatively low performance with a competitive hydrogen evolution reaction (HER) is a challenge to overcome for the NO3RR. In this study, oxygen vacancy-controlled copper oxide (CuOx) catalysts through a plasma treatment are successfully prepared and supported on high surface area porous carbon that are co-doped with N, Se species for its enhanced electrochemical properties. The oxygen vacancy-increased CuOx catalyst supported on the N,Se co-doped porous carbon (CuOx-H/NSePC) exhibited the highest NO3RR performance with faradaic efficiency (FE) of 87.2% and yield of 7.9 mg cm-2 h-1 for the ammonia production, representing significant enhancements of FE and ammonia yield as compared to the un-doped or the oxygen vacancy-decreased catalysts. This high performance should be attributed to a significant increase in the catalytic active sites with facilitated energetics from strategies of doping the catalytic materials and weakening the N─O bonding strength for the adsorption of NO3 - ions on the modulated oxygen vacancies. This results show a promise that co-doping of heteroatoms and regulating of oxygen vacancies can be key factors for performance enhancement, suggesting new guidelines for effective catalyst design of NO3RR.

2.
Small ; 20(19): e2309467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100229

RESUMO

Electrolyte-gated transistors have strong potential for high-performance artificial synapses in neuromorphic bio-interfaces owing to their outstanding synaptic characteristics, low power consumption, and human-like mechanisms. However, the short retention time is a hurdle to overcome owing to the natural diffusion of protons. Here, a novel modulation technique of ionic conductivity is proposed with yttria-stabilized hafnia for the first time to enhance the retention characteristic of a solid-state electrolyte-gated transistor-based artificial synapse. With the optimization of the ionic conductivity in yttria-stabilized hafnia, a high retention time of over 300 s and remarkable synaptic characteristics are accomplished by regulating channel conductance with precise modulation of the strength of the proton-electron coupling intensity along the input signals. Furthermore, pattern recognition simulation is conducted based on the measured synaptic characteristics, exhibiting 94.41% of operation accuracy, which implies a promising solution for neuromorphic in-memory computing systems with a high operation accuracy and low power consumption.

3.
Nanotechnology ; 35(23)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38417173

RESUMO

Graphene and its derivatives are widely used in the field of energy conversion and management due to their excellent physical and chemical properties. In this paper, ultra-thin graphite film (GF) with thickness of 100-150 nm prepared by chemical vapor deposition was transferred to oxygen plasma-treated polyimide (PI) substrate as flexible heating film. The electrothermal and photothermal properties of GF on PI substrates with different treatment time were studied. The experimental results show that the PI substrate pretreated by oxygen plasma can change the surface morphology of GF, increase its electrical conductivity and light absorption capacity, and significantly improve the electrothermal and photothermal properties of GF heater. Under the low applied voltage of 5 V (power density of 0.81 W cm-2), the surface temperature of GF on 40 min plasma-treated PI substrate can rise to 250 °C, which is nearly 50 °C higher than that of GF on untreated PI substrate. When 100 nm thick commercial multilayer graphene film (MLG) is used, plasma-treated PI substrate can increase the electric heating temperature of MLG by 70 °C. In terms of photothermal performance, the surface temperature of GF on 50 min plasma-treated PI substrate can reach 73 °C under one Sun irradiation, which is 8 °C higher than that on untreated substrate. The experimental results are in good agreement with the simulation research. Our strategy has important implications for the development of efficient and energy-saving graphene/graphite-based heating films for advanced electrothermal and photothermal conversion devices.

4.
Nanotechnology ; 35(28)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38579687

RESUMO

Oxygen vacancies and heteroatom doping play important role in oxygen reduction activity of metal oxides. Developing efficient modification method is one of the key issues in catalysts research. Room temperature plasma treatment, with the advantages of mild working conditions, no emissions and high efficiency, is a new catalyst modification method developed in recent years. In this work, hydrothermal synthesizedα-MnO2nanorods are treated in NH3plasma at room temperature. In the reducing atmosphere, oxygen vacancies and N doping are achieved simultaneously on the surface. The NH3plasma etched MnO2demonstrate a significant enhanced oxygen reduction activity with half-wave potential of 0.84 V, limiting current density of 6.32 mA cm-2and transferred electrons number of 3.9. The Mg-air battery with N-MnO2display a maximum power density of 76.3 mW cm-2as well as stable discharge performance. This work provides new ideas for preparing efficient and cost-effective method to boost the catalysts activity.

5.
BMC Vet Res ; 20(1): 153, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659026

RESUMO

BACKGROUND: Melting corneal ulcers are a serious condition that affects a great number of animals and people around the world and it is characterised by a progressive weakening of the tissue leading to possible severe ophthalmic complications, such as visual impairment or blindness. This disease is routinely treated with medical therapy and keratoplasty, and recently also with alternative regenerative therapies, such as cross-linking, amniotic membrane transplant, and laser. Plasma medicine is another recent example of regenerative treatment that showed promising results in reducing the microbial load of corneal tissue together with maintaining its cellular vitality. Since the effect of helium plasma application on corneal mechanical viscoelasticity has not yet been investigated, the aim of this study is first to evaluate it on ex vivo porcine corneas for different exposition times and then to compare the results with previous data on cross-linking treatment. RESULTS: 94 ex vivo porcine corneas divided into 16 populations (healthy or injured, fresh or cultured and treated or not with plasma or cross-linking) were analysed. For each population, a biomechanical analysis was performed by uniaxial stress-relaxation tests, and a statistical analysis was carried out considering the characteristic mechanical parameters. In terms of equilibrium normalised stress, no statistically significant difference resulted when the healthy corneas were compared with lesioned plasma-treated ones, independently of treatment time, contrary to what was obtained about the cross-linking treated corneas which exhibited more intense relaxation phenomena. CONCLUSIONS: In this study, the influence of the Helium plasma treatment was observed on the viscoelasticity of porcine corneas ex vivo, by restoring in lesioned tissue a degree of relaxation similar to the one of the native tissue, even after only 2 min of application. Therefore, the obtained results suggest that plasma treatment is a promising new regenerative ophthalmic therapy for melting corneal ulcers, laying the groundwork for further studies to correlate the mechanical findings with corneal histology and ultrastructural anatomy after plasma treatment.


Assuntos
Córnea , Hélio , Gases em Plasma , Animais , Suínos , Córnea/efeitos dos fármacos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Fenômenos Biomecânicos , Álcalis , Pressão Atmosférica , Úlcera da Córnea/veterinária , Úlcera da Córnea/terapia
6.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473755

RESUMO

Electrospun hybrid scaffolds composed of synthetic and natural polymers have gained increasing interest in tissue engineering applications over the last decade. In this work, scaffolds composed of polylactic acid electrospun fibers, either treated (P-PLA) or non-treated (PLA) with air-plasma, were coated with high molecular weight chitosan to create a core-shell microfibrous structure. The effective thickness control of the chitosan layer was confirmed by gravimetric, spectroscopic (FTIR-ATR) and morphological (SEM) investigations. The chitosan coating increased the fiber diameter of the microfibrous scaffolds while the tensile mechanical tests, conducted in dry and wet environments, showed a reinforcing action of the coating layer on the scaffolds, in particular when deposited on P-PLA samples. The stability of the Chi coating on both PLA and P-PLA substrates was confirmed by gravimetric analysis, while their mineralization capacity was evaluated though scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) after immersing the scaffolds in simulated body fluids (SBF) at 37 °C for 1 week. Sample biocompatibility was investigated through cell viability assay and SEM analysis on mouse pre-osteoblastic MC3T3-E1 cells grown on scaffolds at different times (1, 7, 14 and 21 days). Finally, Alizarin Red assay and qPCR analysis suggested that the combination of plasma treatment and chitosan coating on PLA electrospun scaffolds influences the osteoblastic differentiation of MC3T3-E1 cells, thus demonstrating the great potential of P-PLA/chitosan hybrid scaffolds for bone tissue engineering applications.


Assuntos
Quitosana , Camundongos , Animais , Quitosana/química , Alicerces Teciduais/química , Osteogênese , Poliésteres/química
7.
BMC Oral Health ; 24(1): 753, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951790

RESUMO

BACKGROUND: Gutta-percha (GP) combined with an endodontic sealer is still the core material most widely used for tridimensional obturation. The sealer acts as a bonding agent between the GP and the root dentinal walls. However, one of the main drawbacks of GP core material is the lack of adhesiveness to the sealer. ZnO thin films have many remarkable features due to their considerable bond strength, good optical quality, and excellent piezoelectric, antibacterial, and antifungal properties, offering many potential applications in various fields. This study aimed to explore the influence of GP surface's functionalization with a nanostructured ZnO thin film on its adhesiveness to endodontic sealers. METHODS: Conventional GP samples were divided randomly into three groups: (a) Untreated GP (control); (b) GP treated with argon plasma (PT); (c) Functionalized GP (PT followed by ZnO thin film deposition). GP's surface functionalization encompassed a multi-step process. First, a low-pressure argon PT was applied to modify the GP surface, followed by a ZnO thin film deposition via magnetron sputtering. The surface morphology was assessed using SEM and water contact angle analysis. Further comprehensive testing included tensile bond strength assessment evaluating Endoresin and AH Plus Bioceramic sealers' adhesion to GP. ANOVA procedures were used for data statistical analysis. RESULTS: The ZnO thin film reproduced the underlying surface topography produced by PT. ZnO thin film deposition decreased the water contact angle compared to the control (p < 0.001). Endoresin showed a statistically higher mean bond strength value than AH Plus Bioceramic (p < 0.001). There was a statistically significant difference between the control and the ZnO-functionalized GP (p = 0.006), with the latter presenting the highest mean bond strength value. CONCLUSIONS: The deposition of a nanostructured ZnO thin film on GP surface induced a shift towards hydrophilicity and an increased GP's adhesion to Endoresin and AH Bioceramic sealers.


Assuntos
Colagem Dentária , Guta-Percha , Nanoestruturas , Materiais Restauradores do Canal Radicular , Propriedades de Superfície , Óxido de Zinco , Óxido de Zinco/química , Materiais Restauradores do Canal Radicular/química , Nanoestruturas/química , Guta-Percha/química , Colagem Dentária/métodos , Humanos , Teste de Materiais , Adesividade , Microscopia Eletrônica de Varredura , Resistência à Tração
8.
Chemistry ; 29(66): e202302182, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37667985

RESUMO

The design of non-noble metal bifunctional electrocatalysts with outstanding performance and remarkable stability for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most essential issues to the realization of rechargeable zinc-air battery, and transition metal phosphides (TMPs) have emerged as robust candidates for oxygen electrocatalysts. Herein, N-doped carbon-coated phosphorus-vacancies-rich Ni2 P particles (Vp -Ni2 P@NC) is proposed via simple carbonization and following Ar plasma treatment from a single nickel phosphonate metal-organic framework (MOF) without extra phosphine and nitrogen sources. The facile and rapid plasma treatment can achieve phosphorus vacancies which could modulate the electronic structure to enhance the inherent active and electrical conductivity. Meanwhile, the pyridine-N and graphitized-N produced during calcination also could provide more active sites and increase the electrical conductivity. The resultant Vp -Ni2 P@NC catalyst shows excellent bifunctional electrocatalytic activity (OER/ORR) based on synergistic effect of introducing P vacancies into Ni2 P and N-doped carbon. Vp -Ni2 P@NC catalyst shows more advantageous ΔE value (0.70 V) compared to Pt/C+RuO2 (0.73 V) and most reported catalysts. Additionally, the zinc-air bbatterie (ZAB) employing Vp -Ni2 P@NC as air cathode shows excellent performance. The maximum power density of 203.48 mW cm-2 , the cycling stability of more than 150 h at 10 mA cm-2 .

9.
Nanotechnology ; 34(18)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36720156

RESUMO

This work demonstrates oscillation frequency modulation in a NbO2-based relaxation oscillator device, in which the oscillation frequency increases with operating temperature and source voltage, and decreases with load resistance. An annealing-induced oxygen diffusion at 373 K was carried out to optimize the stoichiometry of the bulk NbO2to achieve consistent oscillation frequency shift with device temperature. The device exhibits stable self-sustained oscillation in which the frequency can be modulated between 2 and 33 MHz, and a wider operating voltage range can be obtained. An additional surface treatment step was employed during fabrication to reduce the surface roughness of the bottom electrode and to remove surface contaminants that affect the interfacial properties of the device. The device frequency tunability coupled with high oscillating frequency and high endurance capability of more than 1.5 × 108cycles indicates that the Pt/NbO2/Pt device is particularly suitable for applications in an oscillatory neural network.

10.
Mikrochim Acta ; 190(10): 379, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682352

RESUMO

Graphite sheet (GS) electrodes are flexible and versatile substrates for sensing electrochemical; however, their use has been limited to incorporate (bio)chemical modifiers. Herein, we demonstrated that a cold (low temperature) CO2 plasma treatment of GS electrodes provides a substantial improvement of the electrochemical activity of these electrodes due to the increased structural defects on the GS surface as revealed by Raman spectroscopy (ID/IG ratio), and scanning electron microscopy images. XPS analyses confirmed the formation of oxygenated functional groups at the GS surface after the plasma treatment that are intrinsically related to the substantial increase in the electron transfer coefficient (K0 values increased from 1.46 × 10-6 to 2.09 × 10-3 cm s-1) and with reduction of the resistance to charge transfer (from 129.8 to 0.251 kΩ). The improved electrochemical activity of CO2-GS electrodes was checked for the detection of emerging contaminant species, such as chloramphenicol (CHL), ciprofloxacin (CIP) and sulphanilamide (SUL) antibiotics, at around + 0.15, + 1.10 and + 0.85 V (versus Ag/AgCl), respectively, by square wave voltammetry. Limit of detection values in the submicromolar range were achieved for CHL (0.08 µmol L-1), CIP (0.01 µmol L-1) and SFL (0.11 µmol L-1), which enabled the sensor to be successfully applied to natural waters and urine samples (recovery values from 85 to 119%). The CO2-GS electrode is highly stable and inexpensive ($0.09 each sensor) and can be easily inserted in portable 3D printed cells for environmental on-site analyses.


Assuntos
Cloranfenicol , Grafite , Ciprofloxacina , Sulfanilamida , Dióxido de Carbono , Eletrodos
11.
Mycopathologia ; 188(4): 361-369, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37294506

RESUMO

There is no definitive method to prevent Candida albicans (C. albicans) biofilm formation on polymethyl methacrylate (PMMA) surfaces. The objective of this study was to evaluate the effect of Helium plasma treatment (before the application of removable dentures to the patient) to prevent or reduce C. albicans ATCC 10,231 the anti-adherent activity, viability, and biofilm formation on PMMA surfaces. One hundred disc-shaped PMMA samples (2 mm × 10 mm) were prepared. The samples were randomly divided into 5 surface groups and treated with different concentrations of Helium plasma: G I: Control group (untreated), G II: 80% Helium plasma-treated group, G III: 85% Helium plasma-treated group, G IV: 90% Helium plasma-treated group, G V: 100% Helium plasma-treated group. C. albicans viability and biofilm formations were evaluated using 2 methods: MTT (3-(4,5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide) assays and Crystal Violet (CV) staining. The surface morphology and C. albicans biofilm images were observed with scanning electron microscopy. The Helium plasma-treated PMMA groups (G II, G III, G IV, G V) observed a significant reduction in C. albicans cell viability and biofilm formation compared with the control group. Treating PMMA surfaces with different concentrations of Helium plasma prevents C. albicans viability and biofilm formation. This study suggests that Helium plasma treatment might be an effective strategy in modifying PMMA surfaces to prevent denture stomatitis formation.


Assuntos
Gases em Plasma , Polimetil Metacrilato , Humanos , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Candida albicans , Gases em Plasma/farmacologia , Propriedades de Superfície , Biofilmes
12.
J Wound Care ; 32(4): 247-251, 2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37029969

RESUMO

AIM: Cold atmospheric plasma (CAP) has antimicrobial properties. We studied the safety of a novel CAP device (PLASOMA prototype; Plasmacure, The Netherlands) that is simple to use and could be applied at a patient's home for the treatment of diabetic foot ulcers (DFUs). Secondary objectives were to investigate the effect of CAP on bacterial load and on ulcer size. METHOD: We included subjects with non-infected, superficial DFUs and treated them with CAP on a daily basis for 10 days. The primary endpoint was the occurrence of serious adverse device effects (SADE). We defined safety as: ≤10% of patients experiencing a SADE other than infection (non-infectious SADE), and ≤60% of patients developing infection of the foot (infectious serious adverse event (SAE)). RESULTS: We enrolled 20 patients. No SADE occurred, but three infectious SAEs occurred at the site of application within one month of treatment; three SAEs unrelated to treatment occurred, and 55% of subjects reported transient mild adverse device effects. Staphylococcus aureus bacterial load decreased directly after CAP application (p=0.01). The mean decrease of ulcer surface area was 43% (95% confidence interval: 20.2%-65.9%). CONCLUSION: CAP treatment in DFUs was safe and well tolerated. Ulcer size and Staphylococcus aureus colonisation decreased during treatment.


Assuntos
Diabetes Mellitus , Pé Diabético , Gases em Plasma , Infecções Estafilocócicas , Humanos , Pé Diabético/epidemiologia , Staphylococcus aureus , Gases em Plasma/uso terapêutico , Carga Bacteriana , Infecções Estafilocócicas/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico
13.
Nano Lett ; 22(8): 3480-3487, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35312332

RESUMO

Nanotechnology has facilitated the development of active food packaging systems with functions that could not be achieved by their traditional counterparts. Such smart and active systems can improve the shelf life of perishable products and overcome major bottlenecks associated with the fabrication of safe and environmentally friendly food packaging systems. Herein, we used a plasma-enabled surface modification strategy to fabricate biodegradable and flexible nanoporous polycaprolactone-based (FNP) films for food packaging systems. Their capacity for preserving tomatoes, tangerines, and bananas at room and refrigeration temperatures was tested by analyzing various fruit parameters (mold generation, appearance changes, freshness, weight loss, firmness, and total soluble solids contents). Compared with commonly used polyethylene terephthalate-based containers, the proposed system enhanced the fruit storage quality (i.e., retained appearance, reduced weight loss, better firmness, and sugar contents) by controlling moisture evaporation and inhibiting mold generation. Thus, the FNP film represents a new active food packaging strategy.


Assuntos
Embalagem de Alimentos , Nanoporos , Humanos , Redução de Peso
14.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445665

RESUMO

Plasmonic gold (Au) and Au-based nanocatalysts have received significant attention over the past few decades due to their unique visible light (VL) photocatalytic features for a wide variety of chemical reactions in the fields of environmental protection. However, improving their VL photocatalytic activity via a rational design is prevalently regarded as a grand challenge. Herein we boosted the VL photocatalysis of the TiO2-supported Au-Cu nanocatalyst by applying O2 plasma to treat this bimetallic plasmonic nanocatalyst. We found that O2 plasma treatment led to a strong interaction between the Au and Cu species compared with conventional calcination treatment. This interaction controlled the size of plasmonic metallic nanoparticles and also contributed to the construction of AuCu-TiO2 interfacial sites by forming AuCu alloy nanoparticles, which, thus, enabled the plasmonic Au-Cu nanocatalyst to reduce the Schottky barrier height and create numbers of highly active interfacial sites. The catalyst's characterizations and density functional theory (DFT) calculations demonstrated that boosted VL photocatalytic activity over O2 plasma treated Au-Cu/TiO2 nanocatalyst arose from the favorable transfer of hot electrons and a low barrier for the reaction between CO and O with the construction of large numbers of AuCu-TiO2 interfacial sites. This work provides an efficient approach for the rational design and development of highly active plasmonic Au and Au-based nanocatalysts and deepens our understanding of their role in VL photocatalytic reactions.


Assuntos
Ligas , Nanopartículas Metálicas , Elétrons , Exercício Físico
15.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834746

RESUMO

Peri-implantitis is an inflammatory disease similar to periodontitis, caused by biofilms formed on the surface of dental implants. This inflammation can spread to bone tissues and result in bone loss. Therefore, it is essential to inhibit the formation of biofilms on the surface of dental implants. Thus, this study examined the inhibition of biofilm formation by treating TiO2 nanotubes with heat and plasma. Commercially pure titanium specimens were anodized to form TiO2 nanotubes. Heat treatment was performed at 400 and 600 °C, and atmospheric pressure plasma was applied using a plasma generator (PGS-200, Expantech, Suwon, Republic of Korea). Contact angles, surface roughness, surface structure, crystal structure, and chemical compositions were measured to analyze the surface properties of the specimens. The inhibition of biofilm formation was assessed using two methods. The results of this study showed that the heat treatment of TiO2 nanotubes at 400 °C inhibited the adhesion of Streptococcus mutans (S. mutans), associated with initial biofilm formation, and that heat treatment of TiO2 nanotubes at 600 °C inhibited the adhesion of Porphyromonas gingivalis (P. gingivalis), which causes peri-implantitis. Applying plasma to the TiO2 nanotubes heat-treated at 600 °C inhibited the adhesion of S. mutans and P. gingivalis.


Assuntos
Implantes Dentários , Nanotubos , Peri-Implantite , Humanos , Nanotubos/química , Biofilmes , Titânio/química , Propriedades de Superfície , Streptococcus mutans
16.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569784

RESUMO

The extracellular matrix (ECM) serves as a complex scaffold with diverse physical dimensions and surface properties influencing NPC cell migration. Polydimethylsiloxane (PDMS), a widely used biocompatible material, is hydrophobic and undesirable for cell seeding. Thus, the establishment of a biomimetic model with varied topographies and surface properties is essential for effective NPC43 cell separation from NP460 cells. This study explored how ECM surface properties influence NP460 and NPC43 cell behaviors via plasma treatments and chemical modifications to alter the platform surface. In addition to the conventional oxygen/nitrogen (O2/N2) plasma treatment, O2 and argon plasma treatments were utilized to modify the platform surface, which increased the hydrophilicity of the PDMS platforms, resulting in enhanced cell adhesion. (3-aminopropyl)triethoxysilane and fibronectin (FN) were used to coat the PDMS platforms uniformly and selectively. The chemical coatings significantly affected cell motility and spreading, as cells exhibited faster migration, elongated cell shapes, and larger spreading areas on FN-coated surfaces. Furthermore, narrower top layer trenches with 5 µm width and a lower concentration of 10 µg/mL FN were coated selectively on the platforms to limit NP460 cell movements and enhance NPC43 cell separation efficiency. A significantly high separation efficiency of 99.4% was achieved on the two-layer scaffold platform with 20/5 µm wide ridge/trench (R/T) as the top layer and 40/10 µm wide R/T as the bottom layer, coupling with 10 µg/mL FN selectively coated on the sidewalls of the top and bottom layers. This work demonstrated an innovative application of selective FN coating to direct cell behavior, offering a new perspective to probe into the subtleties of NPC cell separation efficiency. Moreover, this cost-effective and compact microsystem sets a new benchmark for separating cancer cells.


Assuntos
Fibronectinas , Neoplasias Nasofaríngeas , Humanos , Fibronectinas/metabolismo , Carcinoma Nasofaríngeo , Materiais Biocompatíveis/farmacologia , Adesão Celular , Oxigênio/farmacologia , Dimetilpolisiloxanos/química , Propriedades de Superfície
17.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203320

RESUMO

In this study, we applied argon plasma treatment to titanium surfaces with nanostructures deposited by concentrated alkali treatment and investigated the effects on the surface of the material and the tissue surrounding an implant site. The results showed that the treatment with argon plasma removed carbon contaminants and increased the surface energy of the material while the nanoscale network structure deposited on the titanium surface remained in place. Reactive oxygen species reduced the oxidative stress of bone marrow cells on the treated titanium surface, creating a favorable environment for cell proliferation. Good results were observed in vitro evaluations using rat bone marrow cells. The group treated with argon plasma exhibited the highest apatite formation in experiments using simulated body fluids. The results of in vivo evaluation using rat femurs revealed that the treatment improved the amount of new bone formation around an implant. Thus, the results demonstrate that argon plasma treatment enhances the ability of nanostructured titanium surfaces to induce hard tissue differentiation and supports new bone formation around an implant site.


Assuntos
Nanoestruturas , Gases em Plasma , Animais , Ratos , Argônio/farmacologia , Titânio/farmacologia , Gases em Plasma/farmacologia , Plasma
18.
Molecules ; 28(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175292

RESUMO

To the best of our knowledge, few studies have utilized cold plasma to improve soybean protein extraction yield and the functional properties of soybean protein. In this study, we aimed to assess the benefits of remote plasma treatments on soybean with respect to the utilization of soybean protein. This study involved two different sample forms (whole and crushed beans), two different plasma chemistry modes (ozone and nitrogen oxides [NOx = NO + NO2]), and a novel pressure-swing reactor. Crushed soybeans were significantly affected by NOx-mode plasma treatment. Crushed soybeans treated with NOx-mode plasma had the best outcomes, wherein the protein extraction yield increased from 31.64% in the control to 37.90% after plasma treatment. The water binding capacity (205.50%) and oil absorption capacity (267.67%) of plasma-treated soybeans increased to 190.88% and 246.23 % of the control, respectively. The emulsifying activity and emulsion stability slightly increased compared to those of the control. The secondary structure and surface hydrophobicity were altered. The remote plasma treatment of crushed soybeans increased soybean protein extraction yield compared to plasma-treated whole beans as well as untreated beans and altered the structural and physicochemical properties of soybean proteins.


Assuntos
Glycine max , Proteínas de Soja , Proteínas de Soja/química , Glycine max/química , Água , Fenômenos Químicos , Interações Hidrofóbicas e Hidrofílicas
19.
BMC Oral Health ; 23(1): 186, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997908

RESUMO

BACKGROUND: In implant prosthetic dentistry, the adhesive connection of individualized ceramic crowns and prefabricated titanium bases leads to several benefits. However, the durability of the bonding could be a weak point and especially depends on sufficient surface pretreatment. Cold atmospheric-pressure plasma (CAP) is a pretreatment method that should improve the surface properties without physical damage. Thus, the purpose of this study was to investigate the influence of CAP treatment on pull-off tensile load in two-piece abutment crowns. METHODS: Eighty zirconia crowns and titanium bases were divided into eight groups (n = 10) according to their surface pretreatment prior to cementation with Panavia V5: no treatment (A); sandblasting (B); 10-MDP primer (C); sandblasting and primer (D); CAP (AP); sandblasting and CAP (BP); CAP and primer (CP); sandblasting, CAP and primer (DP). The specimens were thermocycled (5°/55°, 5000 cycles), and then the pull-off tensile load (TL) was measured. Statistical analyses were performed using three-way ANOVA with Tukey post-hoc and Fisher's exact tests. RESULTS: The results showed that the TL was highest in group D (p < 0.0001). Some combinations of different treatments led to effects that were greater than the sum of the individual effects. These effects were modified by interactions. Only in combination with primer, CAP treatment had a small but positive significant effect (group CP vs. C and CP vs. AP, p < 0.0001) which however did not come close to the strong interaction effect that resulted from the combination of sandblasting and primer. CONCLUSION: Within the limitations of this study, CAP treatment cannot be recommended in this specific field of indication due to its unreliable influence on TL in combination with other pretreatment methods.


Assuntos
Coroas , Titânio , Humanos , Cimentação , Teste de Materiais , Análise do Estresse Dentário , Propriedades de Superfície , Cimentos de Resina
20.
Small ; 18(10): e2107150, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35266314

RESUMO

Unidirectional water transport performance is vital for maintaining human thermal and wet comfort in the field of garment materials. In this work, a 3D orthogonal woven fabric (3DOWF) with excellent one-way transport capacity and mechanical properties is developed via 3D weaving and plasma treatment. The 3DOWF consists of polyester yarns (first layer), cotton yarns (second layer), and viscose yarns (third layer) with successively enhanced water absorption capacity. This allows droplets to penetrate spontaneously from the hydrophobic layer to the hydrophilic layer but not vice versa. Moreover, the Coolmax yarn with the core suction effect in the Z-direction and the plasma-treated polyester of the 3DOWF are shown to efficiently speed up the water transport process. In particular, the water penetration rate of the 3DOWF reaches 25 µl s-1 . In turn, the surface temperature after water absorption is increased by 2.6 °C compared with the cotton fabric, while the tensile strengths in the weft and warp directions of the 3DOWF are 49.62 and 18 MPa, respectively. These values represent the best insulation and mechanical characteristics thus far reported among unidirectional water transport fabrics. Therefore, the 3DOWF has great potential for use in watchbands, backpack belts, insoles, and other functional textiles.


Assuntos
Corpo Humano , Têxteis , Humanos , Interações Hidrofóbicas e Hidrofílicas , Poliésteres/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA