Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366050

RESUMO

Non-lytic viruses with enveloped pleomorphic virions (family Pleolipoviridae) are ubiquitous in hypersaline environments across the globe and are associated with nearly all major lineages of halophilic archaea. However, their existence in other ecosystems remains largely unknown. Here, we show that evolutionarily-related viruses also infect hyperthermophilic archaea thriving in deep-sea hydrothermal vents. Archaeoglobus veneficus pleomorphic virus 1 (AvPV1), the first virus described for any member of the class Archaeoglobi, encodes a morphogenetic module typical of pleolipoviruses, including the characteristic VP4-like membrane fusion protein. We show that AvPV1 is a non-lytic virus chronically produced in liquid cultures without substantially affecting the growth dynamics of its host with a stable virus-to-host ratio of ~1. Mining of genomic and metagenomic databases revealed broad distribution of AvPV1-like viruses in geographically remote hydrothermal vents. Comparative genomics, coupled with phylogenetic analysis of VP4-like fusogens revealed deep divergence of pleomorphic viruses infecting halophilic, methanogenic, and hyperthermophilic archaea, signifying niche separation and coevolution of the corresponding virus-host pairs. Hence, we propose a new virus family, "Thalassapleoviridae," for classification of the marine hyperthermophilic virus AvPV1 and its relatives. Collectively, our results provide insights into the diversity and evolution of pleomorphic viruses beyond hypersaline environments.


Assuntos
Vírus de Archaea , Euryarchaeota , Vírus , Archaea/genética , Filogenia , Ecossistema , Vírus/genética , Vírion , Vírus de Archaea/genética
2.
Adv Virus Res ; 105: 117-159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31522703

RESUMO

Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Retroviridae/ultraestrutura , Vírion/ultraestrutura , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA