Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chembiochem ; 25(6): e202300839, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265820

RESUMO

Switching from oil-based to bio-based feedstocks to ensure the green transition to a sustainable and circular future is one of the most pressing challenges faced by many industries worldwide. For the cosmetics and personal and house care industries there is a strong drive to accelerate this transition from the customers that starts favoring the purchase of naturally derived and bio-degradable products over the traditionally available products. In this work we developed a series of fully biobased macromolecules constituted of a glycerol-based oligoester backbone. Based on the subsequent derivatization with fatty acids or peptides, the resulting products may find application as emulsifiers, wetting agents, and potential vectors for the delivery of bioactive peptides. All steps of the resulting macromolecules were conducted following the green chemistry principles with no toxic or environmentally damaging compounds that were used in the overall production process.


Assuntos
Glicerol , Polímeros , Glicerol/química , Polímeros/química , Peptídeos , Ácidos Graxos/química
2.
Mol Pharm ; 17(6): 2083-2098, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348676

RESUMO

Key challenges hindering the clinical translation of the use of nanoparticles (NP) for delivery of drugs to tumors are inadequate drug loading and premature drug release. This study focused on understanding the conditions required to produce nanoparticles that can reach their target site with sufficient drug loading and drug retention for effective pharmacological action. Etoposide, etoposide phosphate, and teniposide were screened against modified poly(glycerol) adipate (PGA) based polymers by monitoring drug release from 40% drug in polymer films and using Fourier transform infrared spectroscopy (FTIR) and contact angle measurements to help understand the release results. Polymers were matched with the specific drugs based on the interactions observed. NP were then prepared by an interfacial deposition method. NPs were characterized and resulted in drug loadings ranging from 3.5% and 5%, respectively, for etoposide phosphate and etoposide with PGA modified with stearate (PGA85%C18) up to 13.4% for teniposide with PGA modified with tryptophan (PGA50%Try) and drug release of just 22-35% over 24 h. Assessment of cytotoxicity showed that etoposide nanoparticles with PGA85%C18 were more potent than an equivalent amount of free drug. This screening method to match polymers to drugs to monitor based drug and polymer interactions thus resulted in the formulation of nanoparticles with higher drug loading and slower release and potential for further development for clinical applications.


Assuntos
Portadores de Fármacos/química , Polímeros/química , Liberação Controlada de Fármacos , Nanopartículas/química , Poliésteres/química
3.
Front Bioeng Biotechnol ; 12: 1447340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355275

RESUMO

Poly(glycerol adipate) (PGA) is one of the aliphatic polyesters of glycerol. The most studied biomedical application of poly(glycerol adipate) is the use of its nanoparticles as drug delivery carriers. The PGA prepolymer can be crosslinked to network materials. The biomedical application of PGA-based network materials has largely remained unexplored till recently. The PGA-based network materials, such as poly(glycerol sebacate) elastomers, can be used in soft tissue regeneration due to their mechanical properties. The modulus of elasticity of PGA elastomers is within the range of MPa, which corresponds to the mechanical properties of human soft tissues. This short review aims at briefly summarizing the possible applications of PGA-based elastomers in tissue engineering, as indicated in recent years in research publications.

4.
J Mech Behav Biomed Mater ; 153: 106493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484428

RESUMO

Elastomeric biocomposites based on poly(glycerol adipate urethane) and hydroxyapatite were fabricated for tissue regeneration. The poly(glycerol adipate urethane) (PGAU) elastomeric composite matrices were obtained by chemical crosslinking of the poly(glycerol adipate) prepolymer (pPGA) with diisocyanate derivative of L-lysine. Two series of composites varying in the amount of L-lysine diisocyanate ethyl ester (LDI) used as a crosslinking agent were manufactured. As a ceramic filler both unmodified and L-lysine surface-modified hydroxyapatite (HAP) particles were used. The novelty of our research consists in the manufactured elastomeric materials and characterization of their linear viscoelastic (LVE) properties. The LVE properties of the composites were investigated by means of dynamic thermomechanical analysis. Frequency sweep and amplitude sweep measurements were performed in shear mode. The influence of the crosslinking agent (LDI) amount, HAP content and surface modification of HAP on the LVE properties of the composites was determined based on the analysis of the master curves of storage (G') and loss (G″) moduli and of tanδ of the composites. Depending on the amount of LDI, HAP and surface modification, the materials differ in the values of rubber elasticity plateau modulus (G0) and G' and G″ determined at selected shear frequencies and at the glassy state. G0 ranges from 278 kPa to 3.98 MPa, G' in the glassy state is within the range of 219 MPa-459 MPa. The G0 values of the PGAU-based composites are within the stiffness range of soft tissue. In view of the choice of HAP as the ceramic component and the G0 values, elastomeric composites have the potential to be used as filling materials in small bone defects (due to their mechanical similarity to osteoid) as well as materials for cartilage tissue regeneration.


Assuntos
Glicerol , Uretana , Glicerol/química , Lisina/química , Teste de Materiais , Elasticidade , Durapatita/química , Adipatos , Ésteres
5.
Biomed Pharmacother ; 175: 116647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703503

RESUMO

OBJECTIVE: To improve the biological and toxicological properties of Mefenamic acid (MA), the galactosylated prodrug of MA named MefeGAL was included in polymeric solid dispersions (PSs) composed of poly(glycerol adipate) (PGA) and Pluronic® F68 (MefeGAL-PS). MefeGAL-PS was compared with polymeric solid formulations of MA (MA-PS) or a mixture of equal ratio of MefeGAL/MA (Mix-PS). METHODS: The in vitro and in vivo pharmacological and toxicological profiles of PSs have been investigated. In detail, we evaluated the anti-inflammatory (carrageenan-induced paw edema test), analgesic (acetic acid-induced writhing test) and ulcerogenic activity in mice after oral treatment. Additionally, the antiproliferative activity of PSs was assessed on in vitro models of colorectal and non-small cell lung cancer. RESULTS: When the PSs were resuspended in water, MefeGAL's, MA's and their mixture's apparent solubilities improved due to the interaction with the polymeric formulation. By comparing the in-vivo biological performance of MefeGAL-PS with that of MA, MefeGAL and MA-PS, it was seen that MefeGAL-PS exhibited the same sustained and delayed analgesic and anti-inflammatory profile as MefeGAL but did not cause gastrointestinal irritation. The pharmacological effect of Mix-PS was present from the first hours after administration, lasting about 44 hours with only slight gastric mucosa irritation. In-vitro evaluation indicated that Mix-PS had statistically significant higher cytotoxicity than MA-PS and MefeGAL-PS. CONCLUSIONS: These preliminary data are promising evidence that the galactosylated prodrug approach in tandem with a polymer-drug solid dispersion formulation strategy could represent a new drug delivery route to improve the solubility and biological activity of NSAIDs.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Mefenâmico , Animais , Ácido Mefenâmico/farmacologia , Ácido Mefenâmico/administração & dosagem , Camundongos , Humanos , Masculino , Edema/tratamento farmacológico , Edema/induzido quimicamente , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Pró-Fármacos/farmacologia , Pró-Fármacos/administração & dosagem , Analgésicos/farmacologia , Analgésicos/administração & dosagem , Analgésicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/toxicidade , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Poloxâmero/química
6.
Polymers (Basel) ; 15(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514438

RESUMO

Enzymatic one-pot synthesis procedures in a one-step and two-step monomers addition were developed to obtain poly(glycerol adipate) macromers with methacrylate end-functional groups under the presence of 1 and 3 wt% of Candida antarctica lipase B (CALB). Glycerol, divinyl adipate, and vinyl methacrylate were enzymatically reacted (vinyl methacrylate was either present from the beginning in the monomers solution or slowly dropped after 6 h of reaction) in tetrahydrofuran (THF) at 40 °C over 48 h. Macromers with a methacrylate end groups fraction of ≈52% in a simple one-pot one-step procedure were obtained with molecular weights (Mn) of ≈7500-7900 g/mol. The obtained products under the one-pot one-step and two steps synthesis procedures carried out using 1 and 3 wt% of a CALB enzymatic catalyst were profusely characterized by NMR (1H and 13C), MALDI-TOF MS, and SEC. The methacrylate functional macromers obtained with the different procedures and 1 wt% of CALB were combined with an Irgacure® 369 initiator to undergo homopolymerization under UV irradiation for 10 and 30 min, in order to test their potential to obtain amorphous networks within minutes with similar properties to those typically obtained by complex acrylation/methacrylation procedures, which need multiple purification steps and harsh reagents such as acyl chlorides. To the best of our knowledge, this is the first time that it has been demonstrated that the obtention of methacrylate-functional predominantly linear macromers based on poly(glycerol adipate) is able to be UV crosslinked in a simple one-step procedure.

7.
Pharmaceutics ; 15(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631315

RESUMO

This study aimed to fabricate new variations of glycerol-based polyesters by grafting poly(glycerol adipate) (PGA) with hydrophobic bioactive moieties, tocopherol (TOC), and cholesterol (CHO). Their effects on nanoparticle (NP) formation, drug release, and cellular responses in cancer and normal cells were evaluated. CHO and TOC were successfully grafted onto PGA backbones with 30% and 50% mole grafting. Increasing the percentage of mole grafting in both molecules increased the glass transition temperature and water contact angle of the final polymers but decreased the critical micelle concentration of the formulated particles. PGA-TOC NPs reduced the proliferation of MDA-MB-231 cancer cells. However, they enhanced the proliferation of primary dermal fibroblasts within a specific concentration range. PGA-CHO NPs minimally affected the growth of cancer and normal cells. Both types of NPs did not affect apoptosis or the cell cycle of cancer cells. PGA-CHO and PGA-TOC NPs were able to entrap SN-38, a hydrophobic anticancer drug, with a particle size <200 nm. PGA-CHO NPs had a higher drug loading capacity and a greater drug release than PGA-TOC NPs. However, SN-38-loaded PGA-TOC NPs showed higher toxicity than SN-38 and SN-38-loaded PGA-CHO NPs due to the combined effects of antiproliferation and higher cellular uptake. Compared with SN-38, the drug-loaded NPs more profoundly induced sub-G1 in the cell cycle analysis and apoptosis of cancer cells in a similar pattern. Therefore, PGA-CHO and PGA-TOC polymers have potential applications as delivery systems for anticancer drugs.

8.
J Colloid Interface Sci ; 641: 1043-1057, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36996683

RESUMO

Sustainably derived poly(glycerol adipate) (PGA) has been deemed to deliver all the desirable features expected in a polymeric scaffold for drug-delivery, including biodegradability, biocompatibility, self-assembly into nanoparticles (NPs) and a functionalisable pendant group. Despite showing these advantages over commercial alkyl polyesters, PGA suffers from a series of key drawbacks caused by poor amphiphilic balance. This leads to weak drug-polymer interactions and subsequent low drug-loading in NPs, as well as low NPs stability. To overcome this, in the present work, we applied a more significant variation of the polyester backbone while maintaining mild and sustainable polymerisation conditions. We have investigated the effect of the variation of both hydrophilic and hydrophobic segments upon physical properties and drug interactions as well as self-assembly and NPs stability. For the first time we have replaced glycerol with the more hydrophilic diglycerol, as well as adjusting the final amphiphilic balance of the polyester repetitive units by incorporating the more hydrophobic 1,6-n-hexanediol (Hex). The properties of the novel poly(diglycerol adipate) (PDGA) variants have been compared against known polyglycerol-based polyesters. Interestingly, while the bare PDGA showed improved water solubility and diminished self-assembling ability, the Hex variation demonstrated enhanced features as a nanocarrier. In this regard, PDGAHex NPs were tested for their stability in different environments and for their ability to encode enhanced drug loading. Moreover, the novel materials have shown good biocompatibility in both in vitro and in vivo (whole organism) experiments.


Assuntos
Glicerol , Nanopartículas , Sistemas de Liberação de Medicamentos , Poliésteres/química , Preparações Farmacêuticas , Adipatos/química , Nanopartículas/química , Portadores de Fármacos/química
9.
Pharmaceutics ; 15(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376218

RESUMO

This study aimed to improve the anticancer effect of Cordyceps militaris herbal extract (CME) on breast cancer cells with hyaluronic acid (HYA) surface-decorated lipid polymer hybrid nanoparticles (LPNPs) and evaluate the applicability of a synthesized poly(glycerol adipate) (PGA) polymer for LPNP preparation. Firstly, cholesterol- and vitamin E-grafted PGA polymers (PGA-CH and PGA-VE, respectively) were fabricated, with and without maleimide-ended polyethylene glycol. Subsequently, CME, which contained an active cordycepin equaling 9.89% of its weight, was encapsulated in the LPNPs. The results revealed that the synthesized polymers could be used to prepare CME-loaded LPNPs. The LPNP formulations containing Mal-PEG were decorated with cysteine-grafted HYA via thiol-maleimide reactions. The HYA-decorated PGA-based LPNPs substantially enhanced the anticancer effect of CME against MDA-MB-231 and MCF-7 breast cancer cells by enhancing cellular uptake through CD44 receptor-mediated endocytosis. This study demonstrated the successful targeted delivery of CME to the CD44 receptors of tumor cells by HYA-conjugated PGA-based LPNPs and the new application of synthesized PGA-CH- and PGA-VE-based polymers in LPNP preparation. The developed LPNPs showed promising potential for the targeted delivery of herbal extracts for cancer treatment and clear potential for translation in in vivo experiments.

10.
Int J Pharm ; 618: 121636, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35259439

RESUMO

The study demonstrated the fabrication of new poly(glycerol adipate) (PGA) nanoparticles decorated with folic acid (FOL-PGA) and triphenylphosphonium (TPP-PGA) and the potential on the delivery of acetogenin-enriched Annona muricata Linn leaf extract to ovarian cancer cells. FOL-PGA and TPP-PGA were successfully synthesized and used to fabricate FOL-decorated nanoparticles (FOL-NPs) and FOL-/TPP- decorated nanoparticles (FOL/TPP-NPs) by blending two polymers at a mass ratio of 1:1. All nanoparticles had small size of around 100 nm, narrow size distribution and high negative surface charge about -30 mV. The stable FOL/TPP-NPs showed highest drug loading of 14.9 ± 1.9% at 1:5 ratio of extract to polymer and reached to 35.8 ± 2.1% at higher ratio. Both nanoparticles released the extract in a biphasic sustained release manner over 5 days. The toxicity of the extract to SKOV3 cells was potentiated by FOL-NPs and FOL/TPP-NPs by 2.0 - 2.6 fold through induction of cell apoptosis. FOL/TPP-NPs showed lower IC50 and higher cellular uptake as compared to FOL-NPs. FOL-NPs exhibited folate receptor-mediated endocytosis. FOL/TPP-NPs provided more advantages than FOL-NPs in terms of stability in physiological fluid, uptake efficiency and targeting ability to mitochondria and showed a promising potential PGA platform for targeted delivery of herbal cytotoxic extracts.


Assuntos
Annona , Nanopartículas , Neoplasias Ovarianas , Humanos , Adipatos , Portadores de Fármacos , Ácido Fólico , Glicerol , Neoplasias Ovarianas/tratamento farmacológico , Extratos Vegetais , Polietilenoglicóis , Polímeros
11.
J Pharm Sci ; 109(2): 981-991, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31682828

RESUMO

Protein-polymer conjugates have been used as therapeutics because they exhibit frequently higher stability, prolonged in vivo half-life, and lower immunogenicity compared with native proteins. The first part of this report describes the enzymatic synthesis of poly(glycerol adipate) (PGA(M)) by transesterification between glycerol and dimethyl adipate using lipase B from Candida antarctica. PGA(M) is a hydrophilic, biodegradable but water insoluble polyester. By acylation, PGA(M) is modified with 6-(Fmoc-amino)hexanoic acid and with hydrophilic poly(ethylene glycol) side chains (mPEG12) rendering the polymer highly water soluble. This is followed by the removal of protecting groups, fluorenylmethyloxycarbonyl, to generate polyester with primary amine groups, namely PGA(M)-g-NH2-g-mPEG12. 1H NMR spectroscopy, FTIR spectroscopy, and gel permeation chromatography have been used to determine the chemical structure and polydispersity index of PGA(M) before and after modification. In the second part, we discuss the microbial transglutaminase-mediated conjugation of the model protein dimethylcasein with PGA(M)-g-NH2-g-mPEG12 under mild reaction conditions. SDS-PAGE proves the protein-polyester conjugation.


Assuntos
Aminas , Poliésteres , Basidiomycota , Caseínas , Transglutaminases
12.
Int J Pharm ; 589: 119826, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32871219

RESUMO

Viral infections represent 44% of newly emerging infections, and as is shown by the COVID-19 outbreak constitute a major risk to human health and wellbeing. Although there are many efficient antiviral agents, they still have drawbacks such as development of virus resistance and accumulation within off-target organs. Encapsulation of antiviral agents into nanoparticles (NPs) has been shown to improve bioavailability, control release, and reduce side effects. However, there is little quantitative understanding of how the uptake of NPs into virally infected cells compares to uninfected cells. In this work, the uptake of fluorescently labeled polymer NPs was investigated in several models of rhinovirus (RV) infected cells. Different multiplicities of RV infections (MOI) and timings of NPs uptake were also investigated. In some cases, RV infection resulted in a significant increase of NPs uptake, but this was not universally noted. For HeLa cells, RV-A16 and RV-A01 infection elevated NPs uptake upon increasing the incubation time, whereas at later timepoints (6 h) a reduced uptake was noted with RV-A01 infection (owing to decreased cell viability). Beas-2B cells exhibited more complex trends: decreases in NPs uptake (cf. uninfected cells) were observed at short incubation times following RV-A01 and RV-A16 infection. At later incubation times (4 h), we found a marked decrease of NPs uptake for RV-A01 infected cells but an increase in uptake with RV-A16 infected cells. Where increases in NPs uptake were found, they were very modest compared to results previously reported for a hepatitis C/ Huh7.5 cell line model. An increase in RV dose (MOI) was not associated with any notable change of NPs uptake. We argue that the diverse endocytic pathways among the different cell lines, together with changes in virus nature, size, and entry mechanism are responsible for these differences. These findings suggest that NPs entry into virally infected cells is a complex process, and further work is required to unravel the different factors which govern this. Undertaking this additional research will be crucial to develop potent nanomedicines for the delivery of antiviral agents.


Assuntos
Nanopartículas/administração & dosagem , Infecções por Picornaviridae/metabolismo , Poliésteres/administração & dosagem , Rhinovirus , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Viral , Endocitose , Genoma Viral , Humanos , Rhinovirus/genética
13.
Eur J Pharm Biopharm ; 142: 377-386, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31319123

RESUMO

Poly(glycerol adipate) (PGA) is a biodegradable, biocompatible, polymer with a great deal of potential in the field of drug delivery. Active drug molecules can be conjugated to the polymer backbone or encapsulated in self-assembled nanoparticles for targeted and systemic delivery. Here, a range of techniques have been used to characterise the enzymatic degradation of PGA extensively for the first time and to provide an indication of the way the polymer will behave and release drug payloads in vivo. Dynamic Light Scattering was used to monitor change in nanoparticle size, indicative of degradation. The release of a fluorescent dye, coupled to PGA, upon incubation with enzymes was measured over a 96 h period as a model of drug release from polymer drug conjugates. The changes to the chemical structure and molecular weight of PGA following enzyme exposure were characterised using FTIR, NMR and GPC. These techniques provided evidence of the biodegradability of PGA, its susceptibility to degradation by a range of enzymes commonly found in the human body and the polymer's potential as a drug delivery platform.


Assuntos
Adipatos/química , Plásticos Biodegradáveis/química , Glicerol/química , Polímeros/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Humanos , Nanopartículas/química
14.
Polymers (Basel) ; 11(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557875

RESUMO

The enzymatically synthesized poly (glycerol adipate) (PGA) has demonstrated all the desirable key properties required from a performing biomaterial to be considered a versatile "polymeric-tool" in the broad field of drug delivery. The step-growth polymerization pathway catalyzed by lipase generates a highly functionalizable platform while avoiding tedious steps of protection and deprotection. Synthesis requires only minor purification steps and uses cheap and readily available reagents. The final polymeric material is biodegradable, biocompatible and intrinsically amphiphilic, with a good propensity to self-assemble into nanoparticles (NPs). The free hydroxyl group lends itself to a variety of chemical derivatizations via simple reaction pathways which alter its physico-chemical properties with a possibility to generate an endless number of possible active macromolecules. The present work aims to summarize the available literature about PGA synthesis, architecture alterations, chemical modifications and its application in drug and gene delivery as a versatile carrier. Following on from this, the evolution of the concept of enzymatically-degradable PGA-drug conjugation has been explored, reporting recent examples in the literature.

15.
Colloids Surf B Biointerfaces ; 167: 115-125, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631222

RESUMO

Polymer-drug conjugates have been actively developed as potential anticancer drug delivery systems. In this study, we report the first polymer-anticancer drug conjugate with poly(glycerol adipate) (PGA) through the successful conjugation of methotrexate (MTX). MTX-PGA conjugates were controllably and simply fabricated by carbodiimide-mediated coupling reaction with various high molar ratios of MTX. The MTX-PGA conjugate self-assembled into nanoparticles with size dependent on the amount of conjugated MTX and the pH of medium. Change in particle size was attributed to steric hindrance and bulkiness inside the nanoparticle core and dissociation of free functional groups of the drug. The MTX-PGA nanoparticles were physically stable in media with pH range of 5-9 and ionic strength of up to 0.15 M NaCl and further chemically stable against hydrolysis in pH 7.4 medium over 30 days but enzymatically degradable to release unchanged free drug. Although 30%MTX-PGA nanoparticles exhibited only slightly less potency than free MTX in 791T cells in contrast to previously reported human serum albumin-MTX conjugates which had >300 times lower potency than free MTX. However, the MTX nanoparticles showed 7 times higher toxicity to Saos-2 cells than MTX. Together with the enzymic degradation experiments, these results suggest that with a suitable biodegradable polymer a linker moiety is not a necessary component. These easily synthesised PGA drug conjugates lacking a linker moiety could therefore be an effective new pathway for development of polymer drug conjugates.


Assuntos
Antineoplásicos/química , Metotrexato/química , Nanopartículas/química , Poliésteres/química , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Composição de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética , Metotrexato/farmacologia , Poliésteres/farmacologia
16.
Eur J Pharm Sci ; 123: 350-361, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30063978

RESUMO

The linear polyester poly(glycerol adipate) (PGA) with its free pendant hydroxyl groups was covalently grafted with indomethacin which yields polymeric prodrugs. It was possible to produce nanospheres with narrow particle size distribution of these polymer-drug conjugates with an optimized interfacial deposition method. Nanospheres were characterized by zeta potential measurements, dynamic light scattering, electron microscopy and nanoparticle tracking analysis. Moreover, cell viability studies and cytotoxicity tests in three different cell lines were carried out showing low toxicity for three different degrees of grafting. In addition, the nanospheres had (in contrast to the free drug) low hemolytic activity in vitro. Release studies of nanodispersions are challenging. The use of a specially developed setup with highly porous aluminum oxide membranes enabled us to overcome problems associated with other setups (e.g. dialysis membranes). A slow and controlled release profile without any burst was observed over 15 days. The results indicate that indomethacin-PGA conjugates can be formulated successfully as nanospheres with the desired characteristics of small size with narrow distribution, controlled drug release and low toxicity. The newly developed particles have the potential to improve the therapy of inflammation and associated diseases.


Assuntos
Inibidores de Ciclo-Oxigenase/química , Portadores de Fármacos , Indometacina/química , Nanopartículas , Poliésteres/química , Células A549 , Óxido de Alumínio/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Inibidores de Ciclo-Oxigenase/toxicidade , Preparações de Ação Retardada , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Indometacina/toxicidade , Cinética , Células LLC-PK1 , Membranas Artificiais , Nanotecnologia , Poliésteres/toxicidade , Porosidade , Solubilidade , Suínos
17.
Int J Pharm ; 547(1-2): 572-581, 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-29908332

RESUMO

Virus infections cause diseases of different severity ranged from mild infection e.g. common cold into life threatening diseases e.g. Human Immunodeficiency virus (HIV), Hepatitis B. Virus infections represent 44% of newly emerging infections. Although there are many efficient antiviral agents, they still have drawbacks due to accumulation at off target organs and developing of virus resistance due to virus mutation. Therefore, developing a delivery system that can selectively target drug into affected organs and avoid off target accumulation would be a highly advantageous strategy to improve antiviral therapy. Nanoparticles (NP) can be effectively targeted to the liver, and therefore it could be used for improving therapy of hepatic virus infections including hepatitis B virus and hepatitis C virus (HCV). Many studies were performed to encapsulate antiviral agents into nano-delivery system to improve their pharmacokinetics parameters to have a better therapeutic efficacy with lower side effects. However, the effect of virus infection on the uptake of NP has not yet been studied in detail. The latter is a crucial area as modulation of endocytic uptake of nanoparticles could impact on reduce potential therapeutic usefulness of antiviral agents loaded into nano-delivery system. In this study, a fluorescently-labelled polymeric nanoparticle was prepared and used to track NP uptake into Huh7.5, human hepatoma cells transfected with replicating HCV genomes, compared with non-transfected cells as a model representing hepatocyte uptake. Confocal microscopy and flow cytometry of virus transfected Huh7.5 cells unexpectedly demonstrated two-fold increase in uptake of NP compared to non-transfected cells. Therefore, virus transfection enhanced NP uptake into Huh7.5 cells and NP could be considered as a promising delivery system for targeted treatment of hepatitis viruses.


Assuntos
Antivirais/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Hepacivirus/efeitos dos fármacos , Hepatócitos/metabolismo , Nanopartículas/química , Linhagem Celular Tumoral , Infecções por HIV/tratamento farmacológico , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Permeabilidade , Polímeros/química , Transfecção
18.
Int J Pharm ; 531(1): 225-234, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28843347

RESUMO

The linear biodegradable polyester poly(glycerol adipate) (PGA) was synthesized via enzymatic polycondensation using lipase B from Candida antarctica (CAL-B). Every monomer unit of PGA possesses a pendant hydroxyl group which is responsible for the hydrophilic character and moisture swelling. These OH groups were esterified to different degrees with the anti-inflammatory drug indomethacin in order to create a prodrug with a pH-sensitive linker for modified drug release. The structure of the conjugates was determined via ATR FT-IR spectroscopy, NMR spectroscopy, GPC and UV/VIS spectroscopy. The physical properties of polymers with different drug load were investigated using DSC, contact angle measurements and oscillatory rheology. Drug release was monitored over one month in vitro. A very slow, but continuous release was observed in PBS. Slightly acidic conditions and lipase activity are accelerating the indomethacin release. Therefore, poly(glycerol adipate) - indomethacin conjugates are promising prodrugs for the local sustained release of indomethacin.


Assuntos
Composição de Medicamentos , Indometacina/química , Poliésteres/química , Preparações de Ação Retardada , Espectroscopia de Infravermelho com Transformada de Fourier
19.
J Polym Sci A Polym Chem ; 54(20): 3267-3278, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28781423

RESUMO

There is an increasing need to develop bio-compatible polymers with an increased range of different physicochemical properties. Poly(glycerol-adipate) (PGA) is a biocompatible, biodegradable amphiphilic polyester routinely produced from divinyl adipate and unprotected glycerol by an enzymatic route, bearing a hydroxyl group that can be further functionalized. Polymers with an average Mn of ∼13 kDa can be synthesized without any post-polymerization deprotection reactions. Acylated polymers with fatty acid chain length of C4, C8, and C18 (PGAB, PGAO, and PGAS, respectively) at different degrees of substitution were prepared. These modifications yield comb-like polymers that modulate the amphiphilic characteristics of PGA. This novel class of biocompatible polymers has been characterized through various techniques such as FT-IR, 1H NMR, surface, thermal analysis, and their ability to self-assemble into colloidal structures was evaluated by using DLS. The highly tunable properties of PGA reported herein demonstrate a biodegradable polymer platform, ideal for engineering solid dispersions, nanoemulsions, or nanoparticles for healthcare applications. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3267-3278.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA