Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
FASEB J ; 33(6): 7615-7624, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30908942

RESUMO

Hirschsprung disease (HSCR) is a common cause of intestinal obstruction in the newborn. Hirschsprung-associated enterocolitis (HAEC) is a significant and life-threatening complication of HSCR, affecting up to 60% of patients. Animal models of endothelin receptor B (EdnrB) mutation reliably model human HSCR and HAEC. We previously demonstrated intestinal dysbiosis and a gut-specific deficiency of B-lymphocyte-produced secretory IgA (sIgA), the primary effector molecule of mucosal immunity, in mice with homozygous neural crest cell-conditional deletion of EdnrB (EdnrBNCC-/-). To determine mechanisms for sIgA deficiency, we examined intrinsic and extrinsic aspects of B-lymphocyte development and function. Expression of the endothelin axis components [endothelin-1 (ET-1), endothelin-3 (ET-3), endothelin receptor A (EdnrA), EdnrB] were determined over a developmental time course. B-lymphocyte survival and Ig production were assayed in vitro. Polymeric Ig receptor (pIgR)-mediated IgA transport into the intestinal lumen was interrogated. We found endothelin axis component (EdnrA, EdnrB, ET-1, ET-3) expression in developing extramedullary hematopoietic organs and that some splenic B lymphocytes express EdnrB. Splenic B lymphocytes from EdnrBNCC-/- mice showed no intrinsic defect in survival vs. wild-type (WT) B lymphocytes. In vitro stimulation of splenic B lymphocytes demonstrated decreased IgA, IgG, and IgM production in EdnrBNCC-/-vs. WT mice. Additionally, small intestinal pIgR was decreased ∼50% in EdnrBNCC-/- mice. These results suggest an intrinsic B-lymphocyte defect in antibody production as well as an extrinsic defect in IgA transport in the EdnrBNCC-/- model of HAEC. Our results are consistent with human HAEC observations of decreased luminal sIgA and mouse models of other inflammatory bowel diseases, in which decreased pIgR is seen in concert with a dysregulated microbiota. Finally, our results suggest targeting the dysbiotic microbiome and pIgR-mediated sIgA transport as potential therapeutic approaches in prevention and treatment of HAEC.-Medrano, G., Cailleux, F., Guan, P., Kuruvilla, K., Barlow-Anacker, A. J., Gosain, A. B-lymphocyte-intrinsic and -extrinsic defects in secretory immunoglobulinA production in the neural crest-conditional deletion of endothelin receptor B model of Hirschsprung-associated enterocolitis.


Assuntos
Linfócitos B/metabolismo , Enterocolite/metabolismo , Doença de Hirschsprung/metabolismo , Imunoglobulina A Secretora/biossíntese , Crista Neural/metabolismo , Receptor de Endotelina B/genética , Deleção de Sequência , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Receptor de Endotelina B/metabolismo , Baço/metabolismo
2.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012687

RESUMO

Salivary immunoglobulin A (IgA) plays a critical role in mucosal immunity. Chronic exposure to moderate heat induces heat acclimation, which modifies salivary functions. However, the changes in salivary IgA secretion in heat-acclimated rats are unclear. In this study, we investigated salivary IgA secretion and the expression of polymeric Ig receptor (pIgR), a key mediator of mucosal IgA secretion, in the submandibular glands (SMGs) of heat-acclimated rats. Following maintenance at an ambient temperature (Ta) of 24 ± 0.1 °C for 10 days, male Wistar rats were subjected to Ta of 32 ± 0.2 °C for 5 days (HE group) for heat acclimation or maintained at Ta of 24 ± 0.1°C (CN group). The rats were then anesthetized, pilocarpine (0.5 mg/kg) was intraperitoneally injected, and saliva was collected. Afterward, the SMGs and plasma were sampled. The salivary IgA concentration and IgA flow rate were significantly higher in the HE group than in the CN group. Similarly, SMG pIgR expression was significantly higher in HE rats. The levels of plasma cytokines, including interleukin (IL)-5, IL-6, and interferon-γ, were significantly greater in HE rats than in CN rats. Heat acclimation may enhance oral immunity through salivary IgA secretion and pIgR upregulation in the SMGs.


Assuntos
Aclimatação/fisiologia , Temperatura Alta , Imunoglobulina A Secretora/metabolismo , Receptores de Imunoglobulina Polimérica/biossíntese , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Glândula Submandibular/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
3.
Am J Respir Cell Mol Biol ; 58(6): 736-744, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29314863

RESUMO

Loss of secretory IgA is common in the small airways of patients with chronic obstructive pulmonary disease and may contribute to disease pathogenesis. Using mice that lack secretory IgA in the airways due to genetic deficiency of polymeric Ig receptor (pIgR-/- mice), we investigated the role of neutrophils in driving the fibrotic small airway wall remodeling and emphysema that develops spontaneously in these mice. By flow cytometry, we found an increase in the percentage of neutrophils among CD45+ cells in the lungs, as well as an increase in total neutrophils, in pIgR-/- mice compared with wild-type controls. This increase in neutrophils in pIgR-/- mice was associated with elastin degradation in the alveolar compartment and around small airways, along with increased collagen deposition in small airway walls. Neutrophil depletion using anti-Ly6G antibodies or treatment with broad-spectrum antibiotics inhibited development of both emphysema and small airway remodeling, suggesting that airway bacteria provide the stimulus for deleterious neutrophilic inflammation in this model. Exogenous bacterial challenge using lysates prepared from pathogenic and nonpathogenic bacteria worsened neutrophilic inflammation and lung remodeling in pIgR-/- mice. This phenotype was abrogated by antiinflammatory therapy with roflumilast. Together, these studies support the concept that disruption of the mucosal immune barrier in small airways contributes to chronic obstructive pulmonary disease progression by allowing bacteria to stimulate chronic neutrophilic inflammation, which, in turn, drives progressive airway wall fibrosis and emphysematous changes in the lung parenchyma.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Neutrófilos/patologia , Pneumonia Bacteriana/patologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Bacillus/patogenicidade , Benzamidas/farmacologia , Ciclopropanos/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neutrófilos/microbiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/patologia , Receptores de Superfície Celular/genética
4.
Br J Nutr ; 116(12): 2030-2043, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27993179

RESUMO

For this study, threonine (Thr) deficiency was hypothesised to exacerbate the intestinal damage induced by feed withdrawal with coccidial infection because of its high obligatory requirement by the gut; two dietary Thr treatments (0·49 and 0·90 %) were applied to chicks from 0 to 21 d of age. At 13 d of age, feed was withdrawn for 24 h from one-half of birds of each dietary treatment with subsequent gavage of a 25× dose of coccidial vaccine. Overall, there were four treatments with eight replicate cages per treatment. Under combined challenge, birds fed the Thr-deficient diet had 38 % lower 13-21-d body weight gain (P≤0·05) compared with birds fed the Thr-control diet. At 21 d, the challenged group fed low Thr had higher number of oocysts (+40 %, P=0·03) and lower crypt depth (-31 %, P0·05). Overall, Thr deficiency worsened the detrimental effects of combined feed withdrawal and coccidial infection on growth performance and oocyst shedding by impairing intestinal morphology, barrier function, lymphocyte profiles and their cytokine expressions.


Assuntos
Coccidiose/veterinária , Deficiências Nutricionais/veterinária , Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Doenças das Aves Domésticas/fisiopatologia , Vacinas Protozoárias/uso terapêutico , Treonina/deficiência , Administração Oral , Animais , Restrição Calórica/efeitos adversos , Restrição Calórica/veterinária , Ceco/efeitos dos fármacos , Ceco/imunologia , Ceco/parasitologia , Ceco/patologia , Galinhas/crescimento & desenvolvimento , Coccidiose/imunologia , Coccidiose/patologia , Coccidiose/prevenção & controle , Citocinas/genética , Citocinas/metabolismo , Deficiências Nutricionais/imunologia , Deficiências Nutricionais/fisiopatologia , Dieta com Restrição de Proteínas/efeitos adversos , Dieta com Restrição de Proteínas/veterinária , Eimeria/efeitos dos fármacos , Eimeria/crescimento & desenvolvimento , Eimeria/imunologia , Eimeria/isolamento & purificação , Interações Hospedeiro-Parasita/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/imunologia , Íleo/parasitologia , Íleo/patologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Jejuno/efeitos dos fármacos , Jejuno/crescimento & desenvolvimento , Jejuno/imunologia , Masculino , Oocistos/efeitos dos fármacos , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Distribuição Aleatória
5.
Biosci Biotechnol Biochem ; 80(12): 2490-2496, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27499238

RESUMO

Salivary IgA-a primary factor in local immunity of the oral cavity-plays an important role in maintaining local immune function in the oral cavity and prevent upper respiratory tract infections. Oral IgA levels are known to fluctuate in an exercise-dependent manner; thus, we investigated the effects of voluntary exercise on salivary IgA secretion in rats to better understand the mechanism by which this occurs. Six-week-old male Wistar rats were placed in individual cages with or without access to exercise wheels for three weeks. Notably, animals who engaged in voluntary exercise demonstrated significant increases in IgA concentration in saliva and submandibular gland tissue, as well as a markedly higher salivary IgA flow rate. Moreover, active rats also exhibited elevated polymeric Ig receptor (pIgR) mRNA expression in submandibular gland tissue. Collectively, these results suggest that voluntary exercise may increase salivary IgA concentration and boost immune function in the oral cavity.


Assuntos
Imunoglobulina A/metabolismo , Condicionamento Físico Animal , Receptores de Imunoglobulina Polimérica/metabolismo , Saliva/metabolismo , Glândula Submandibular/metabolismo , Animais , Peso Corporal , Regulação da Expressão Gênica , Imunoglobulina A/sangue , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Imunoglobulina Polimérica/genética
6.
Br J Nutr ; 113(12): 1895-902, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-25999025

RESUMO

Secretory IgA in the saliva is essential for protection from mucosally transmitted pathogens and maintaining homeostasis at mucosal surfaces of the oral cavity. Expression of submandibular gland polymeric Ig receptor (pIgR) is essential for IgA secretion. In the present study, we investigated the influence of indigestible carbohydrates on IgA production in the salivary gland and saliva. Five-week-old rats were fed a fibre-free diet (control), or a diet with 5 % (w/w) fructo-oligosaccharide (FOS) or a combination of 2·5 % (w/w) polydextrose (PDX) and 2·5 % (w/w) lactitol for 21-d. IgA concentrations in the caecal digesta, submandibular gland tissue, and saliva in the FOS and PDX+lactitol diet groups were significantly higher than those in the control group (P< 0·05). The increase in IgA in the submandibular gland tissue was confirmed using immunohistochemical analysis. However, the IgA concentrations of serum did not differ between the FOS or PDX+lactitol groups and the control group (P= 0·5). In the FOS and PDX+lactitol groups, the pIgR mRNA (pIgR/ß-actin) expression level in the submandibular gland tissue was significantly higher than that in the control group (P< 0·05). The present study suggests that indigestible carbohydrates play an important role in the increase in IgA concentrations in the submandibular gland tissue, saliva, and caecal digesta.


Assuntos
Carboidratos da Dieta/administração & dosagem , Imunoglobulina A/análise , Receptores de Imunoglobulina Polimérica/genética , Saliva/imunologia , Glândula Submandibular/imunologia , Animais , Ceco/imunologia , Dieta , Carboidratos da Dieta/metabolismo , Digestão , Expressão Gênica , Imunoglobulina A/sangue , Imuno-Histoquímica , Masculino , Oligossacarídeos/administração & dosagem , RNA Mensageiro/análise , Ratos , Ratos Wistar
7.
Methods ; 65(1): 127-32, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811333

RESUMO

The mucosal epithelia together with adaptive immune responses, such as local production and secretion of dimeric and polymeric immunoglobulin A (IgA), are a crucial part of the first line of defense against invading pathogens. IgA is primarily secreted as SIgA and plays multiple roles in mucosal defense. The study of SIgA-mediated protection is an important area of research in mucosal immunity but an easy, fast and reproducible method to generate pathogen-specific SIgA in vitro has not been available. We report here a new method to produce SIgA by co-purification of dimeric IgA, containing J chain, and recombinant human SC expressed in CHO cells. We previously reported the generation, production and characterization of the human recombinant monoclonal antibody IgA2 b12. This antibody, derived from the variable regions of the neutralizing anti-HIV-1 mAb IgG1 b12, blocked viral attachment and uptake by epithelial cells in vitro. We used a cloned CHO cell line that expresses monomeric, dimeric and polymeric species of IgA2 b12 for large-scale production of dIgA2 b12. Subsequently, we generated a CHO cell line to express recombinant human secretory component (rhSC). Here, we combined dIgA2 b12 and CHO-expressed rhSC via column chromatography to produce SIgA2 b12 that remains fully intact upon elution with 0.1M citric acid, pH 3.0. We have performed biochemical analysis of the synthesized SIgA to confirm the species is of the expected size and retains the functional properties previously described for IgA2 b12. We show that SIgA2 b12 binds to the HIV-1 gp120 glycoprotein with similar apparent affinity to that of monomeric and dimeric forms of IgA2 b12 and neutralizes HIV-1 isolates with similar potency. An average yield of 6 mg of SIgA2 b12 was achieved from the combination of 20mg of purified dIgA2 b12 and 2L of rhSC-containing CHO cell supernatant. We conclude that synthesized production of stable SIgA can be generated by co-purification. This process introduces a simplified means of generating a variety of pathogen-specific SIgA antibodies for research and clinical applications.


Assuntos
Anticorpos Neutralizantes/biossíntese , Imunoglobulina A Secretora/biossíntese , Animais , Anticorpos Neutralizantes/isolamento & purificação , Células CHO , Cromatografia de Afinidade , Cricetinae , Cricetulus , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Humanos , Imunoglobulina A Secretora/isolamento & purificação , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
8.
Poult Sci ; 94(2): 172-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25589081

RESUMO

Intestinal mucin 2 (MUC2), a major gel-forming mucin, represents a primary barrier component of mucus layers and a target site for secretory IgA. Polymeric Ig receptor (pIgR) expressed on the basolateral surface of epithelium is used to transport polymeric IgA from the lamina propria into luminal mucins to establish the first lines of intestinal defense. To determine the spatio-temporal expression of MUC2, IgA, and pIgR in broiler chickens and Pekin ducks, intestinal tissues (n=6/age) were dissected from late embryonic days up to 21 d posthatch. In the intestinal tissues, MUC2 was expressed with a rapid increase at hatching, followed by steady expression through 21 d posthatch both in chickens and ducks. IgA expression was low during the first week following hatching for both species. From the second week posthatch, IgA was rapidly expressed in the chickens, arriving at steady expression in the third week after hatching. However, in ducks, IgA expression during the 2 to 3 wk posthatch period was relatively slow. The expression of pIgR was greatly increased after hatching for both species, but its expression in ducks was relatively delayed. In addition, intestinal pIgR expression was highly correlated with MUC2 and IgA expressions in chickens but just moderately correlated in ducks. The relatively slow and late expression of IgA and pIgR as well as their moderate correlation may or may not account for the susceptibility of ducklings to mucosal pathogens at a young age.


Assuntos
Galinhas/metabolismo , Patos/metabolismo , Imunoglobulina A/metabolismo , Mucina-2/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Animais , Embrião de Galinha , Patos/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mucosa Intestinal/metabolismo , Mucina-2/genética , Receptores de Imunoglobulina Polimérica/genética
9.
Int J Med Microbiol ; 304(8): 1233-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25455218

RESUMO

Colonization of Streptococcus pneumoniae (pneumococci) is a prerequisite for bacterial dissemination and their capability to enter the bloodstream. Pneumococci have evolved various successful strategies to colonize the mucosal epithelial barrier of humans. A pivotal mechanism of host cell invasion implicated with invasive diseases is promoted by the interaction of pneumococcal PspC with the polymeric Ig-receptor (pIgR). However, the mechanism(s) of pneumococcal endocytosis and the intracellular route of pneumococci upon uptake by the PspC-pIgR-interaction are not known. Here, we demonstrate by using a combination of pharmacological inhibitors and genetics interference approaches the involvement of active dynamin-dependent caveolae and clathrin-coated vesicles for pneumococcal uptake via the PspC-pIgR mechanism. Depleting cholesterol from host cell membranes and disruption of lipid microdomains impaired pneumococcal internalization. Moreover, chemical inhibition of clathrin or functional inactivation of dynamin, caveolae or clathrin by RNA interference significantly affected pneumococcal internalization suggesting that clathrin-mediated endocytosis (CME) and caveolae are involved in the bacterial uptake process. Confocal fluorescence microscopy of pIgR-expressing epithelial cells infected with pneumococci or heterologous Lactococcus lactis expressing PspC demonstrated bacterial co-localization with fluorescent-tagged clathrin and early as well as recycling or late endosomal markers such as Lamp1, Rab5, Rab4, and Rab7, respectively. In conclusion these data suggest that PspC-promoted uptake is mediated by both CME and caveolae. After endocytosis pneumococci are routed via the endocytic pathway into early endosomes and are then sorted into recycling or late endosomes, which can result in pneumococcal killing in phagolysosomes or transcytosis via recycling endosomes.


Assuntos
Aderência Bacteriana , Caveolinas/metabolismo , Clatrina/metabolismo , Endocitose , Células Epiteliais/fisiologia , Receptores de Imunoglobulina Polimérica/metabolismo , Streptococcus pneumoniae/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Cães , Células Epiteliais/microbiologia , Humanos , Ligação Proteica
10.
Exp Parasitol ; 145 Suppl: S84-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24731967

RESUMO

The nasal mucosa is the first contact with antigens to induce IgA response. The role of this site has rarely been studied. We have shown than intranasal administration with Naegleria fowleri lysates plus Cholera toxin (CT) increased the protection (survival up to 100%) against N. fowleri infection in mice and apparently antibodies IgA and IgG together with polymorphonuclear (PMN) cells avoid the attachment of N. fowleri to apical side of the nasal epithelium. We also observed that nasal immunization resulted in the induction of antigen-specific IgG subclasses (IgG1 and IgG2a) in nasal washes at days 3 and 9 after the challenge and IgA and IgG in the nasal cavity, compared to healthy and infected mice. We found that immunization with both treatments, N. fowleri lysates plus CT or CT alone, increased the expression of the genes for alpha chain, its receptor (pIgR), and it also increased the expression of the corresponding proteins evidenced by the ∼65 and ∼74kDa bands, respectively. Since the production of pIgR, IgA and IgG antibodies, is up-regulated by some factors, we analyzed the expression of genes for IL-10, IL-6, IFN-γ, TNF-α and IL-1ß by using RT-PCR of nasal passages. Immunization resulted in an increased expression of IL-10, IL-6, and IFN-γ cytokines. We also aimed to examine the possible influences of immunization and challenge on the production of inflammatory cytokines (TNF-α and IL-1ß). We observed that the stimulus of immunization inhibits the production of TNF-α compared to the infected group where the infection without immunization causes an increase in it. Thus, it is possible that the coexistence of selected cytokines produced by our immunization model may provide a highly effective immunological environment for the production of IgA, IgG and pIgR as well as a strong activation of the PMN in mucosal effector tissue such as nasal passages.


Assuntos
Toxina da Cólera/administração & dosagem , Citocinas/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Naegleria fowleri/química , Mucosa Nasal/imunologia , Receptores de Imunoglobulina Polimérica/metabolismo , Administração Intranasal , Animais , Western Blotting , Toxina da Cólera/imunologia , Citocinas/genética , Regulação da Expressão Gênica , Cabras , Imunoglobulina A/genética , Imunoglobulina A/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Isotipos de Imunoglobulinas/genética , Imuno-Histoquímica , Camundongos , Naegleria fowleri/imunologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/parasitologia , RNA Mensageiro/metabolismo , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Imunoglobulina Polimérica/genética
11.
MAbs ; 13(1): 1987180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34693867

RESUMO

The global health crisis and economic tolls of COVID-19 necessitate a panoply of strategies to treat SARS-CoV-2 infection. To date, few treatment options exist, although neutralizing antibodies against the spike glycoprotein have proven to be effective. Because infection is initiated at the mucosa and propagates mainly at this site throughout the course of the disease, blocking the virus at the mucosal milieu should be effective. However, administration of biologics to the mucosa presents a substantial challenge. Here, we describe bifunctional molecules combining single-domain variable regions that bind to the polymeric Ig receptor (pIgR) and to the SARS-CoV-2 spike protein via addition of the ACE2 extracellular domain (ECD). The hypothesis behind this design is that pIgR will transport the molecule from the circulation to the mucosal surface where the ACE ECD would act as a decoy receptor for the nCoV2. The bifunctional molecules bind SARS-Cov-2 spike glycoprotein in vitro and efficiently transcytose across the lung epithelium in human tissue-based analyses. Designs featuring ACE2 tethered to the C-terminus of the Fc do not induce antibody-dependent cytotoxicity against pIgR-expressing cells. These molecules thus represent a potential therapeutic modality for systemic administration of neutralizing anti-SARS-CoV-2 molecules to the mucosa.


Assuntos
Anticorpos Antivirais , Tratamento Farmacológico da COVID-19 , Receptores de Imunoglobulina Polimérica , SARS-CoV-2/imunologia , Anticorpos de Cadeia Única , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Células CHO , COVID-19/genética , COVID-19/imunologia , Cricetulus , Cães , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos , Mucosa Bucal/imunologia , Domínios Proteicos , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/imunologia , Receptores de Imunoglobulina Polimérica/uso terapêutico , SARS-CoV-2/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacocinética , Anticorpos de Cadeia Única/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Suínos
12.
Front Immunol ; 11: 618327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584711

RESUMO

Both non-immune "natural" and antigen-induced "immune" IgM are important for protection against infections and for regulation of immune responses to self-antigens. The roles of its Fc receptor (FcµR) in these IgM effector functions have begun to be explored. In the present study, by taking advantage of the difference in IgM-ligand binding of FcµRs of human (constitutive binding) and mouse (transient binding), we replaced non-conserved amino acid residues of human FcµR with mouse equivalents before establishment of cell lines stably expressing mutant or wild-type (WT) receptors. The resultant eight-different mutant FcµR-bearing cells were compared with WT receptor-bearing cells for cell-surface expression and IgM-binding by flow cytometric assessments using receptor-specific mAbs and IgM paraproteins as ligands. Three sites Asn66, Lys79-Arg83, and Asn109, which are likely in the CDR2, DE loop and CDR3 of the human FcµR Ig-like domain, respectively, were responsible for constitutive IgM binding. Intriguingly, substitution of Glu41 and Met42 in the presumed CDR1 with the corresponding mouse residues Gln and Leu, either single or more prominently in combination, enhanced both the receptor expression and IgM binding. A four-aa stretch of Lys24-Gly27 in the predicted A ß-strand of human FcµR appeared to be essential for maintenance of its proper receptor conformation on plasma membranes because of reduction of both receptor expression and IgM-binding potential when these were mutated. Results from a computational structural modeling analysis were consistent with these mutational data and identified a possible mode of binding of FcµR with IgM involving the loops including Asn66, Arg83 and Asn109 of FcµR interacting principally with the Cµ4 domain including Gln510 and to a lesser extent Cµ3 domain including Glu398, of human IgM. To our knowledge, this is the first experimental report describing the identification of amino acid residues of human FcµR critical for binding to IgM Fc.


Assuntos
Aminoácidos/química , Sítios de Ligação de Anticorpos , Modelos Moleculares , Receptores Fc/química , Animais , Regiões Determinantes de Complementaridade/química , Simulação por Computador , Humanos , Camundongos
13.
J Ethnopharmacol ; 260: 112578, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31962152

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The seeds of Vaccaria segetalis (Neck.) Garcke is used for the treatment of urinary diseases in Traditional Chinese Medicine according to the Chinese Pharmacopoeia. Crude polysaccharides and the aqueous extract from the seeds of V. segetalis (SVCP) were proved to be effective on treating benign prostatic hyperplasia. AIM OF THE STUDY: The aim of this study was to test the effects of SVCP on urinary tract infection (UTI) induced by uropathogenic Escherichia coli (UPEC) strain CFT073 in the rat model and to investigate the underlying mechanisms. MATERIALS AND METHODS: A rat UTI model was established with the infection of UPEC strain CFT073. After oral administration of SVCP, the urinalysis and histological examination were evaluated. The levels of pro-inflammatory cytokines, procalcitonin (PCT) and polymeric Ig receptor (PIGR) were used to test the effects of SVCP on host immunity. The mRNA level of PapG in CFT073 was used to test the influence of SVCP on virulence factor. The effects of SVCP on the inhibition of bacterial adhesion were evaluated with mice UTI model. RESULTS: In the rat UTI model, the levels of bacterial load, white blood cells (WBC) and red blood cells (RBC) in urine and the pathological injury in the bladder were significantly up-regulated, the expression of PIGR in kidney was down-regulated, no significant change was observed on the pro-inflammatory cytokines in urine. After oral administration of SVCP for 3 days, the levels of bacterial load, WBC and RBC in urine were significantly decreased, the pathological injury in the bladder were remarkably inhibited. The expression of IL-6, IL-8 in urine and PIGR in kidney were significantly up-regulated by SVCP (200 mg/kg). SVCP showed no effect on the concentration of PCT in serum. SVCP failed to down-regulate the mRNA level of PapG in CFT073. In the mice UTI model, pre-treatment of SVCP failed to inhibit the intracellular bacterial load in the bladder. CONCLUSIONS: The therapeutic effects of SVCP on treating UTIs might result from the up-regulation of innate immunity in the kidney. SVCP can be used as an alternative therapeutic agent for UTIs.


Assuntos
Antibacterianos/farmacologia , Infecções por Escherichia coli/prevenção & controle , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Rim/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Sementes , Infecções Urinárias/prevenção & controle , Escherichia coli Uropatogênica/efeitos dos fármacos , Vaccaria , Animais , Antibacterianos/isolamento & purificação , Aderência Bacteriana/efeitos dos fármacos , Carga Bacteriana , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Fatores Imunológicos/isolamento & purificação , Mediadores da Inflamação/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/microbiologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Extratos Vegetais/isolamento & purificação , Polissacarídeos/isolamento & purificação , Ratos Sprague-Dawley , Sementes/química , Transdução de Sinais , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/microbiologia , Infecções Urinárias/imunologia , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/imunologia , Escherichia coli Uropatogênica/patogenicidade , Vaccaria/química , Virulência/efeitos dos fármacos
14.
Elife ; 52016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26943617

RESUMO

As a first-line vertebrate immune defense, the polymeric immunoglobulin receptor (pIgR) transports polymeric IgA and IgM across epithelia to mucosal secretions, where the cleaved ectodomain (secretory component; SC) becomes a component of secretory antibodies, or when unliganded, binds and excludes bacteria. Here we report the 2.6Å crystal structure of unliganded human SC (hSC) and comparisons with a 1.7Å structure of teleost fish SC (tSC), an early pIgR ancestor. The hSC structure comprises five immunoglobulin-like domains (D1-D5) arranged as a triangle, with an interface between ligand-binding domains D1 and D5. Electron paramagnetic resonance measurements confirmed the D1-D5 interface in solution and revealed that it breaks upon ligand binding. Together with binding studies of mutant and chimeric SCs, which revealed domain contributions to secretory antibody formation, these results provide detailed models for SC structure, address pIgR evolution, and demonstrate that SC uses multiple conformations to protect mammals from pathogens.


Assuntos
Imunoglobulinas/química , Imunoglobulinas/metabolismo , Componente Secretório/química , Componente Secretório/metabolismo , Animais , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Peixes , Humanos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína
15.
Gut Microbes ; 6(2): 156-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901893

RESUMO

The symbiotic relationship between the mammalian host and gut microbes has fascinated many researchers in recent years. Use of germ-free animals has contributed to our understanding of how commensal microbes affect the host. Immunodeficiency animals lacking specific components of the mammalian immune system, on the other hand, enable studying of the reciprocal function-how the host controls which microbes to allow for symbiosis. Here we review the recent advances and discuss our perspectives of how to better understand the latter, with an emphasis on the effects of adaptive immunity on the composition and diversity of gut commensal bacteria.


Assuntos
Imunidade Adaptativa , Microbioma Gastrointestinal/imunologia , Simbiose , Animais , Humanos
16.
Gut Microbes ; 5(6): 688-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25536286

RESUMO

While the gut epithelium represents the largest mucosal tissue, the mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple outcomes that remain poorly understood at the molecular level. Deciphering such events may provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the intestinal immune system include maturation processes prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. As commensal bacteria are naturally coated by natural and antigen-specific SIgA in the gut lumen, understanding the consequences of such an interaction may provide new clues on how the antibody contributes to homeostasis at mucosal surfaces. This review discusses several aspects of the role of SIgA in the essential communication existing between the host epithelium and members of its microbiota.


Assuntos
Fenômenos Fisiológicos Bacterianos , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/microbiologia , Simbiose , Animais , Bactérias/imunologia , Humanos , Mucosa Intestinal/imunologia
17.
Gut Microbes ; 5(5): 652-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483334

RESUMO

The intestinal mucosa harbors the largest population of antibody (Ab)-secreting plasma cells (PC) in the human body, producing daily several grams of immunoglobulin A (IgA). IgA has many functions, serving as a first-line barrier that protects the mucosal epithelium from pathogens, toxins and food antigens (Ag), shaping the intestinal microbiota, and regulating host-commensal homeostasis. Signals induced by commensal colonization are central for regulating IgA induction, maintenance, positioning and function and the number of IgA(+) PC is dramatically reduced in neonates and germ-free (GF) animals. Recent evidence demonstrates that the innate immune effector molecules tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) are required for IgA(+) PC homeostasis during the steady state and infection. Moreover, new functions ascribed to PC independent of Ab secretion continue to emerge, suggesting that PC, including IgA(+) PC, should be re-examined in the context of inflammation and infection. Here, we outline mechanisms of IgA(+) PC generation and survival, reviewing their functions in health and disease.


Assuntos
Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Plasmócitos/imunologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata
18.
Artigo em Inglês | MEDLINE | ID: mdl-23487566

RESUMO

The two principal antibody classes present in saliva are secretory IgA (SIgA) and IgG; the former is produced as dimeric IgA by local plasma cells (PCs) in the stroma of salivary glands and is transported through secretory epithelia by the polymeric Ig receptor (pIgR), also named membrane secretory component (SC). Most IgG in saliva is derived from the blood circulation by passive leakage mainly via gingival crevicular epithelium, although some may be locally produced in the gingiva or salivary glands. Gut-associated lymphoid tissue (GALT) and nasopharynx-associated lymphoid tissue (NALT) do not contribute equally to the pool of memory/effector B cells differentiating to mucosal PCs throughout the body. Thus, enteric immunostimulation may not be the best way to activate the production of salivary IgA antibodies although the level of specific SIgA in saliva may still reflect an intestinal immune response after enteric immunization. It remains unknown whether the IgA response in submandibular/sublingual glands is better related to B-cell induction in GALT than the parotid response. Such disparity is suggested by the levels of IgA in submandibular secretions of AIDS patients, paralleling their highly upregulated intestinal IgA system, while the parotid IgA level is decreased. Parotid SIgA could more consistently be linked to immune induction in palatine tonsils/adenoids (human NALT) and cervical lymph nodes, as supported by the homing molecule profile observed after immune induction at these sites. Several other variables influence the levels of antibodies in salivary secretions. These include difficulties with reproducibility and standardization of immunoassays, the impact of flow rate, acute or chronic stress, protein loss during sample handling, and uncontrolled admixture of serum-derived IgG and monomeric IgA. Despite these problems, saliva is an easily accessible biological fluid with interesting scientific and clinical potentials.

19.
Int J Biochem Cell Biol ; 45(8): 1730-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23660296

RESUMO

The human newborn infant is susceptible to gut inflammatory disorders. In particular, growth-restricted infants or infants born prematurely may develop a severe form of intestinal inflammation known as necrotizing enterocolitis (NEC), which has a high mortality. Milk provides a multitude of proteins with anti-inflammatory properties and in this review we gather together some recent significant advances regarding the isolation and proteomic identification of these minor constituents of both human and bovine milk. We introduce the process of inflammation, with a focus on the immature gut, and describe how a multitude of milk proteins act against the inflammatory process according to both in vitro and in vivo studies. We highlight the effects of milk proteins such as caseins, and of whey proteins such as alpha-lactalbumin, beta-lactoglobulin, lactoferrin, osteopontin, immunoglobulins, trefoil factors, lactoperoxidase, superoxide dismutase, platelet-activating factor acetylhydrolase, alkaline phosphatase, and growth factors (TGF-ß, IGF-I and IGF-II, EGF, HB-EGF). The effects of milk fat globule proteins, such as TLR-2, TLR-4, sCD14 and MFG-E8/lactadherin, are also discussed. Finally, we indicate how milk proteins could be useful for the prophylaxis and therapy of intestinal inflammation in infants and children.


Assuntos
Anti-Inflamatórios/farmacologia , Intestinos/patologia , Proteínas do Leite/farmacologia , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/uso terapêutico , Humanos , Recém-Nascido , Inflamação/tratamento farmacológico , Inflamação/patologia , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Proteínas do Leite/química , Proteínas do Leite/uso terapêutico , Modelos Biológicos , Dados de Sequência Molecular , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Proto-Oncogene Mas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA