Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.270
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nano Lett ; 24(4): 1423-1430, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251923

RESUMO

Nanopillar/tube arrays have emerged as encouraging platforms, possessing remarkable advantages, including large specific areas and highly aligned orientations. Despite the progress of nano/microfabrication technologies, facile and controllable fabrication of conductive polymer nanopillar/tube arrays remains challenging. In this study, we demonstrate that the air-liquid interfacial self-assembly can be extended to obtain three-dimensional nanostructured arrays. A smart and novel method is proposed for preparing uniform conductive polymer nanopillar/tube arrays by a template-mediated interfacial synthesis approach. By utilizing capillary force, precise control processes of the nanostructure and patterned structure can be easily realized. Furthermore, a transfer strategy is devised, allowing for scalable fabrication and expansion of the applicability. Applications, including antibacterial surfaces and actuators, have been demonstrated. We extend the air-liquid interfacial synthesis technique as a powerful and universal strategy for producing ordered nanopillar/tube arrays and show the great potential of soft nanostructured arrays as advanced platforms in diverse applications.

2.
Small ; : e2403261, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031855

RESUMO

Electrocatalytic hydrogen peroxide (H2O2) production via two-electron oxygen reduction reaction (2e--ORR) features energy-saving and eco-friendly characteristics, making it a promising alternative to the anthraquinone oxidation process. However, the common existence of numerous 2e--ORR-inactive sites/species on electrocatalysts tends to catalyze side reactions, especially under low potentials, which compromises energy efficiency and limits H2O2 yield. Addressing this, a high surface density of mono-species pyrrolic nitrogen configurations is formed over a polypyrrole@carbon nanotube composite. Thermodynamic and kinetic calculation and experimental investigation collaboratively confirm that these densely distributed and highly selective active sites effectively promote high-rate 2e--ORR electrocatalysis and inhibit side reactions over a wide potential range. Consequently, an ultra-high and stable H2O2 yield of up to 67.9/51.2 mol g-1 h-1 has been achieved on this material at a current density of 200/120 mA cm-1, corresponding Faradaic efficiency of 72.8/91.5%. A maximum H2O2 concentration of 13.47 g L-1 can be accumulated at a current density of 80 mA cm-1 with satisfactory stability. The strategy of surface active site densification thus provides a promising and universal avenue toward designing highly active and efficient electrocatalysts for 2e--ORR as well as a series of other similar electrochemical processes.

3.
Small ; 20(16): e2308581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039500

RESUMO

Structure engineering of magnetic-dielectric multi-components is emerging as an effective approach for presuming high-performance electromagnetic (EM) absorption, but still faces bottlenecks due to the ambiguous regulation mechanism of surface morphology. Here, a novel wrinkled surface structure is tailored on the ZnFe2O4 microsphere via a spray-pyrolysis induced Kirkendall diffusion effect, the conductivity of the sample is affected, and a better impedance matching is adjusted by modulating the concentration of metal nitrate precursors. Driven by a vapor phase polymerization, conductive polypyrrole (PPy) shell are in situ decorated on the ZnFe2O4 microsphere surfaces, ingeniously constructing a core-shell ZnFe2O4@PPy composites. Moreover, a systematic investigation reveals that this unique wrinkled surface structure is highly dependent on the metal salt concentration. Optimized wrinkle ZnFe2O4@PPy composite exhibits a minimum reflection loss (RLmin) reached -41.0 dB and the effective absorption bandwidth (EAB) can cover as wide as 4.1 GHz. The enhanced interfacial polarization originated from high-density ZnFe2O4-PPy heterostructure, and the conduction loss of PPy contributes to the boosted dielectric loss capability. This study gives a significant guidance for preparing high-performance EM composites by tailoring the surface wrinkle structure.

4.
Small ; 20(3): e2304892, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691021

RESUMO

Layered indium selenide (InSe) is a new 2D semiconductor material with high carrier mobility, widely adjustable bandgap, and high ductility. However, its ion storage behavior and related electrochemical reaction mechanism are rarely reported. In this study, InSe nanoflakes encapsulated in conductive polypyrrole (InSe@PPy) are designed in consideration of restraining the severe volume change in the electrochemical reaction and increasing conductivity via in situ chemical oxidation polymerization. Density functional theory calculations demonstrate that the construction of heterostructure can generate an internal electric field to accelerate electron transfer via additional driving forces, offering synergistically enhanced structural stability, electrical conductivity, and Na+ diffusion process. The resulting InSe@PPy composite shows outstanding electrochemical performance in the sodium ion batteries system, achieving a high reversible capacity of 336.4 mA h g-1 after 500 cycles at 1 A g-1 and a long-term cyclic stability with capacity of 274.4 mA h g-1 after 2800 cycles at 5 A g-1 . In particular, the investigation of capacity fluctuation within the first cycling reveals the alternating significance of intercalation and conversion reactions and evanescent alloying reaction. The combined reaction mechanism of insertion, conversion, and alloying of InSe@PPy is revealed by in situ X-ray diffraction, ex situ electrochemical impedance spectroscopy, and transmission electron microscopy.

5.
Small ; 20(23): e2309206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38149505

RESUMO

Ferroptosis is an emerging non-apoptotic death process, mainly involving lipid peroxidation (LPO) caused by iron accumulation, which is potentially lethal to the intrinsically apoptotic-resistant malignant tumor. However, it is still restricted by the inherent antioxidant systems of tumor cells and the poor efficacy of traditional iron-based ferroptosis initiators. Herein, the study develops a novel ferroptosis-inducing agent based on PEGylated Cu+/Cu2+-doped black phosphorus@polypyrrole heterojunction (BP@CPP), which is constructed by utilizing the phosphate on the surface of BP to chelate Cu ions and initiating subsequent in situ polymerization of pyrrole. As a novel Z-scheme heterojunction, BP@CPP possesses an excellent photocatalytic activity in which the separated electron-hole pairs under laser irradiation endow it with powerful oxidizing and reducing capacities, which synergy with Cu+/Cu2+ self-cycling catalyzing Fenton-like reaction to further strengthen reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, ultimately leading to efficient ferroptosis. Systematic in vitro and in vivo evaluations demonstrate that BP@CPP effectively inhibit tumor growth by inducing desired ferroptosis while maintaining a favorable biosafety in the body. Therefore, the developed BP@CPP-based ferroptosis initiator provides a promising strategy for ferroptosis-like cancer therapy.


Assuntos
Cobre , Ferroptose , Oxirredução , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Cobre/farmacologia , Animais , Linhagem Celular Tumoral , Polímeros/química , Polímeros/farmacologia , Pirróis/química , Pirróis/farmacologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos , Glutationa/metabolismo , Fósforo/química
6.
Small ; 20(26): e2311802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258398

RESUMO

Conductive polymers are recognized as ideal candidates for the development of noninvasive and wearable sensors for real-time monitoring of potassium ions (K+) in sweat to ensure the health of life. However, the low ion-to-electron transduction efficiency and limited active surface area hamper the development of high-performance sensors for low-concentration K+ detection in the sweat. Herein, a wearable K+ sensor is developed by tailoring the nanostructure of polypyrrole (PPy), serving as an ion-to-electron transduction layer, for accurately and stably tracing the K+ fluctuation in human sweat. The PPy nanostructures can be tailored from nanospheres to nanofibers by controlling the supramolecular assembly process during PPy polymerization. Resultantly, the ion-to-electron transduction efficiency (17-fold increase in conductivity) and active surface area (1.3-fold enhancement) are significantly enhanced, accompanied by minimized water layer formation. The optimal PPy nanofibers-based K+ sensor achieved a high sensitivity of 62 mV decade-1, good selectivity, and solid stability. After being integrated with a temperature sensor, the manufactured wearable sensor realized accurate monitoring of K+ fluctuation in the human sweat.


Assuntos
Nanofibras , Polímeros , Potássio , Pirróis , Dispositivos Eletrônicos Vestíveis , Nanofibras/química , Pirróis/química , Polímeros/química , Potássio/química , Potássio/análise , Humanos , Técnicas Biossensoriais/métodos , Elétrons , Íons , Suor/química , Condutividade Elétrica
7.
Small ; 20(28): e2309263, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38321840

RESUMO

The development of high-precision insoluble conducting polymer patterns for soft electronics is extremely challenging, mainly because of the incompatibility of the synthesis process with the underlying layers. In this study, a novel transfer-printing method is designed that enables the fabrication of photolithographic insoluble conducting polypyrrole (PPy) electrode patterns on soft substrates with high precision, demonstrating compatibility with various soft organic functional layers. Excellent mechanical stability, good biocompatibility, ultra-smooth surface, and outstanding conformability are observed. The photolithographic PPy electrode patterns, combined with an elastic organic semiconductor and dielectric, produce conformal all-organic transistors with mobility of 1.8 cm2 V-1 s-1. This study paves the way to use insoluble conducting polymers to develop complex, high-density flexible patterns and offers a promising organic electrode for the new-generation soft all-organic electronics.

8.
Small ; 20(5): e2305501, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752688

RESUMO

Recent progress in synthesizing and integrating surface-supported metal-organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost-effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials. This study introduces a method to improve the electrical conductivity of HKUST-1 templates by in situ polymerization of conductive polypyrrole (PPy) chains within the SURMOF pores (named as PPy@HKUST-1). Nanomembrane-origami technology is employed for integration, allowing a rolled-up metallic nanomembrane to contact the HKUST-1 films without causing damage. After a 24 h loading period, the electrical conductivity at room temperature reaches approximately 5.10-6 S m-1 . The nanomembrane-based contact enables reliable electrical characterization even at low temperatures. Key parameters of PPy@HKUST-1 films, such as trap barrier height, dielectric constant, and tunneling barrier height, are determined using established conduction mechanisms. These findings represent a significant advancement in real-time control of SURMOF conductivity, opening pathways for innovative electronic-optoelectronic device development. This study demonstrates the potential of SURMOFs to revolutionize hybrid electronic devices by enhancing electrical conductivity through intelligent integration strategies.

9.
Environ Res ; 252(Pt 1): 118881, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582430

RESUMO

Nitrate reduction in bio-electrochemical systems (BESs) has attracted wide attention due to its low sludge yields and cost-efficiency advantages. However, the high resistance of traditional electrodes is considered to limit the denitrification performance of BESs. Herein, a new graphene/polypyrrole (rGO/PPy) modified electrode is fabricated via one-step electrodeposition and used as cathode in BES for improving nitrate removal from wastewater. The formation and morphological results support the successful formation of rGO/PPy nanohybrids and confirm the part covalent bonding of Py into GO honeycomb lattices to form a three-dimensional cross-linked spatial structure. The electrochemical tests indicate that the rGO/PPy electrode outperforms the unmodified electrode due to the 3.9-fold increase in electrochemical active surface area and 6.9-fold decrease in the charge transfer resistance (Rct). Batch denitrification activity tests demonstrate that the BES equipped with modified rGO/PPy biocathode could not only achieve the full denitrification efficiency of 100% with energy recovery (15.9 × 10-2 ± 0.14 A/m2), but also favor microbial attach and growth with improved biocompatible surface. This work provides a feasible electrochemical route to fabricate and design a high-performance bioelectrode to enhance denitrification in BESs.


Assuntos
Desnitrificação , Eletrodos , Grafite , Polímeros , Pirróis , Grafite/química , Polímeros/química , Pirróis/química , Técnicas Eletroquímicas/métodos , Fontes de Energia Bioelétrica , Nitratos/química , Carbono/química , Fibra de Carbono/química
10.
Environ Res ; 247: 118193, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220086

RESUMO

In the presented study, a novel polypyrrole-decorated bentonite magnetic nanocomposite (MBnPPy) was synthesized for efficient removal of both anionic methyl orange (MO) and cationic crystal violet (CV) dyes from contaminated water. The synthesis of this novel adsorbent involved a two-step process: the magnetization of bentonite followed by its modification through in-situ chemical polymerization. The adsorbent was characterized by SEM/EDX, TEM/SAED, BET, TGA/DTA-DTG, FTIR, VSM, and XRD studies. The investigation of the adsorption properties of MBnPPy was focused on optimizing various parameters, such as dye concentration, medium pH, dosage, contact time, and temperature. The optimal conditions were established as follows: dye concentration of Co (CV/MO) at 100 mg/L, MBnPPy dosage at 2.0 g/L, equilibrium time set at 105 min for MO and 120 min for CV, medium pH adjusted to 5.0 for MO dye and 8.0 for CV dye, and a constant temperature of 303.15 K. The different kinetic and isotherm models were applied to fit the experimental results, and it was observed that the Pseudo-2nd-order kinetics and Langmuir adsorption isotherm were the best-fitted models. The maximal monolayer adsorption capacities of the adsorbent were found to be 78.74 mg/g and 98.04 mg/g (at 303.15 K) for CV and MO, respectively. The adsorption process for both dyes was exothermic and spontaneous. Furthermore, a reasonably good regeneration ability of MBnPPy (>83.45%/82.65% for CV/MO) was noted for up to 5 adsorption-desorption cycles with little degradation. The advantages of facile synthesis, cost-effectiveness, non-toxicity, strong adsorption capabilities for both anionic and cationic dyes, and easy separability with an external magnetic field make MBnPPy novel.


Assuntos
Compostos Azo , Nanocompostos , Poluentes Químicos da Água , Corantes/química , Adsorção , Polímeros , Violeta Genciana/química , Bentonita/química , Pirróis , Água/química , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Cinética
11.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474921

RESUMO

Integrated safety sensors for personal protection equipment increasingly attract research activities as there is a high need for workers in delicate situations to be physically monitored in order to avoid accidents. In this work, we present a simple approach to generate thin, homogeneous polypyrrole (PPy) layers on flexible textile polyamide fabrics. PPy layers of 0.5-1 µm were deposited on the fabric, which thus kept its flexibility. The conductive layers are multifunctional and can act as temperature and gas sensors for the detection of corrosive gases such as HCl and NH3. Using three examples of life-threatening environments, we were able to monitor temperature, atmospheric NH3 and HCl within critical ranges, i.e., 100 to 400 ppm for ammonia and 20 to 100 ppm for HCl. In the presence of HCl, a decrease in resistance was observed, while gaseous NH3 led to an increase in resistance. The sensor signal thus allows for distinguishing between these two gases and indicating critical concentrations. The simple and cheap manufacturing of such PPy sensors is of substantial interest for the future design of multifunction functional sensors in protective clothing.

12.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731470

RESUMO

This investigation is motivated by an interest in multiferroic BaFe12O19 (BFO), which combines advanced ferrimagnetic and ferroelectric properties at room temperature and exhibits interesting magnetoelectric phenomena. The ferroelectric charge storage properties of BFO are limited due to high coercivity, low dielectric constant, and high dielectric losses. We report the pseudocapacitive behavior of BFO, which allows superior charge storage compared to the ferroelectric charge storage mechanism. The BFO electrodes show a remarkably high capacitance of 1.34 F cm-2 in a neutral Na2SO4 electrolyte. The charging mechanism is discussed. The capacitive behavior is linked to the beneficial effect of high-energy ball milling (HEBM) and the use of an efficient dispersant, which facilitates charge transfer. Another approach is based on the use of conductive polypyrrole (PPy) for the fabrication of PPy-BFO composites. The choice of new polyaromatic dopants with a high charge-to-mass ratio plays a crucial role in achieving a high capacitance of 4.66 F cm-2 for pure PPy electrodes. The composite PPy-BFO (50/50) electrodes show a capacitance of 3.39 F cm-2, low impedance, reduced charge transfer resistance, enhanced capacitance retention at fast charging rates, and good cyclic stability due to the beneficial effect of advanced dopants, HEBM, and synergy of the contribution of PPy and BFO.

13.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611809

RESUMO

Nowadays, drug delivery systems (DDSs) are gaining more and more attention. Conducting polymers (CPs) are efficiently used for DDS construction as such systems can be used in therapy. In this research, a well-known CP, polypyrrole (PPy), was synthesized in the presence of the polysaccharide heparin (HEP) and chlorpromazine (CPZ) using sodium dodecyl sulfate (SDS) as electrolyte on a steel substrate. The obtained results demonstrate the successful incorporation of CPZ and HEP into the polymer matrix, with the deposited films maintaining stable electrochemical parameters across multiple doping/dedoping cycles. Surface roughness, estimated via AFM analysis, revealed a correlation with layer thickness-decreasing for thinner layers and increasing for thicker ones. Moreover, SEM images revealed a change in the morphology of PPy films when PPy is electropolymerized in the presence of CPZ and HEP, while FTIR confirmed the presence of CPZ and HEP within PPy. Due to its lower molecular mass compared to HEP, CPZ was readily integrated into the thin polymer matrix during deposition, with diffusion being unimpeded, as opposed to films with greater thickness. Finally, the resulting system exhibited the ability to release CPZ, enabling a dosing range of 10 mg to 20 mg per day, effectively covering the therapeutic concentration range.


Assuntos
Clorpromazina , Polímeros , Pirróis , Sistemas de Liberação de Medicamentos , Heparina
14.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792034

RESUMO

In this paper, we report a titanium dioxide/polypyrrole/phosphorene (TiO2/PPy/phosphorene) nanocomposite as an active material for supercapacitor electrodes. Black phosphorus (BP) was fabricated by ball milling to induce a phase transition from red phosphorus, and urea-functionalized phosphorene (urea-FP) was obtained by urea-assisted ball milling of BP, followed by sonication. TiO2/PPy/phosphorene nanocomposites can be prepared via chemical oxidative polymerization, which has the advantage of mass production for a one-pot synthesis. The specific capacitance of the ternary nanocomposite was 502.6 F g-1, which was higher than those of the phosphorene/PPy (286.25 F g-1) and TiO2/PPy (150 F g-1) nanocomposites. The PPy fully wrapped around the urea-FP substrate provides an electron transport pathway, resulting in the enhanced electrical conductivity of phosphorene. Furthermore, the assistance of anatase TiO2 nanoparticles enhanced the structural stability and also improved the specific capacitance of the phosphorene. To the best of our knowledge, this is the first report on the potential of phosphorene hybridized with conducting polymers and metal oxides for practical supercapacitor applications.

15.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792192

RESUMO

Conducting polymers like polypyrrole, polyaniline, and polythiophene with nanostructures offers several advantages, such as high conductivity, a conjugated structure, and a large surface area, making them highly desirable for energy storage applications. However, the direct synthesis of conducting polymers with nanostructures poses a challenge. In this study, we employed a hard template method to fabricate polystyrene@polypyrrole (PS@PPy) core-shell nanoparticles. It is important to note that PS itself is a nonconductive material that hinders electron and ion transport, compromising the desired electrochemical properties. To overcome this limitation, the PS cores were removed using organic solvents to create hollow PPy nanospheres. We investigated six different organic solvents (cyclohexane, toluene, tetrahydrofuran, chloroform, acetone, and N,N-dimethylformamide (DMF)) for etching the PS cores. The resulting hollow PPy nanospheres showed various nanostructures, including intact, hollow, buckling, and collapsed structures, depending on the thickness of the PPy shell and the organic solvent used. PPy nanospheres synthesized with DMF demonstrated superior electrochemical properties compared to those prepared with other solvents, attributed to their highly effective PS removal efficiency, increased specific surface area, and improved charge transport efficiency. The specific capacitances of PPy nanospheres treated with DMF were as high as 350 F/g at 1 A/g. And the corresponding symmetric supercapacitor demonstrated a maximum energy density of 40 Wh/kg at a power density of 490 W/kg. These findings provide new insights into the synthesis method and energy storage mechanisms of PPy nanoparticles.

16.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542834

RESUMO

This research aims to deepen the understanding of the relationship between conductivity and morphology in polypyrrole (PPy) via a comparison of the bipolaron to polaron ratios with a focus on the C-H deformation area. PPy samples were synthesized with different surfactants: sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and tween 80 (TW). This study revealed that SDS significantly altered the bipolaron and polaron in the C-H deformation region and showed higher conductivity than other surfactants. Notably, the morphological shifts to a sheet-like structure when using ammonium sulfate (APS) contrasted with the particle-like form observed with ferric chloride (FeCl3). These results showed that if the oxidant changed, the bipolaron and polaron ratios in C-H deformation were unrelated to PPy morphology. However, this work showed a consistent relationship between SDS use, the bipolaron and polaron ratios in the C-H deformation, and the conductivity properties. Moreover, the natural positive charge of PPy and negatively charged SDS molecules may lead to an electrostatic interaction between PPy and SDS. This work assumes that this interaction might cause the transformation of polaron to bipolaron in the C-H deformation region, resulting in improved conductivity of PPy. This work offers more support for the future investigation of PPy characteristics.

17.
Small ; 19(50): e2304668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626454

RESUMO

The inherent slow diffusion dynamics of aqueous zinc-ion batteries (AZIBs) act as a significant hindrance to their universal utilization as energy storage systems, largely attributed to the scarcity of superior cathode materials. In this study, a novel method that amalgamates oxygen defect engineering and polymer intercalation, guided by theoretical computations, to confront this challenge, is introduced. This approach begins with density functional theory calculations, demonstrating that the shielding effect rendered by polypyrrole (PPy) between NH4 V3 O8 (NVO) layers, along with the cooperative influence of oxygen defects (Od ), optimizes the kinetic transport of Zn2+ . Leveraging these theoretical outcomes, a two-step hydrothermal synthesis procedure is devised to fabricate PPy-intercalated NVO embedded with Od (NVO-Od @PPy). The empirical findings corroborate the theoretical predictions, showcasing that the NVO-Od @PPy//Zn system manifests exceptional cycling stability. Specifically, the NVO-Od @PPy electrode delivers an optimal reversible capacity, yielding 421 mAh g-1 at a current density of 0.1 A g-1 . Remarkably, even at an elevated current density of 10 A g-1 , it sustains a capacity of 175.7 mAh g-1 , while maintaining a capacity retention of 99% over 1000 cycles. This research provides pivotal insights for the engineering of high-performing cathode materials for AZIBs, paving the way for their future advancements.

18.
Small ; 19(45): e2303038, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475524

RESUMO

Biomimetic flexible electronics for E-skin have received increasing attention, due to their ability to sense various movements. However, the development of smart skin-mimic material remains a challenge. Here, a simple and effective approach is reported to fabricate super-tough, stretchable, and self-healing conductive hydrogel consisting of polyvinyl alcohol (PVA), Ti3 C2 Tx MXene nanosheets, and polypyrrole (PPy) (PMP hydrogel). The MXene nanosheets and Fe3+ serve as multifunctional cross-linkers and effective stress transfer centers, to facilitate a considerable high conductivity, super toughness, and ultra-high stretchability (elongation up to 4300%) for the PMP hydrogel with. The hydrogels also exhibit rapid self-healing and repeatable self-adhesive capacity because of the presence of dynamic borate ester bond. The flexible capacitive strain sensor made by PMP hydrogel shows a relatively broad range of strain sensing (up to 400%), with a self-healing feature. The sensor can precisely monitor various human physiological signals, including joint movements, facial expressions, and pulse waves. The PMP hydrogel-based supercapacitor is demonstrated with a high capacitance retention of ≈92.83% and a coulombic efficiency of ≈100%.

19.
Small ; 19(14): e2206301, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36596657

RESUMO

Conductive polymeric microneedle (MN) arrays as biointerface materials show promise for the minimally invasive monitoring of analytes in biodevices and wearables. There is increasing interest in microneedles as electrodes for biosensing, but efforts have been limited to metallic substrates, which lack biological stability and are associated with high manufacturing costs and laborious fabrication methods, which create translational barriers. In this work, additive manufacturing, which provides the user with design flexibility and upscale manufacturing, is employed to fabricate acrylic-based microneedle devices. These microneedle devices are used as platforms to produce intrinsically-conductive, polymer-based surfaces based on polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). These entirely polymer-based solid microneedle arrays act as dry conductive electrodes while omitting the requirement of a metallic seed layer. Two distinct coating methods of 3D-printed solid microneedles, in situ polymerization and drop casting, enable conductive functionality. The microneedle arrays penetrate ex vivo porcine skin grafts without compromising conductivity or microneedle morphology and demonstrate coating durability over multiple penetration cycles. The non-cytotoxic nature of the conductive microneedles is evaluated using human fibroblast cells. The proposed fabrication strategy offers a compelling approach to manufacturing polymer-based conductive microneedle surfaces that can be further exploited as platforms for biosensing.


Assuntos
Polímeros , Pirróis , Animais , Suínos , Humanos , Sistemas de Liberação de Medicamentos/métodos , Agulhas , Impressão Tridimensional
20.
Small ; 19(29): e2300001, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058094

RESUMO

Challenges remain in the development of highly efficient catalysts for selective electrochemical transformation of carbon dioxide (CO2 ) to high-valued hydrocarbons. In this study, oxygen vacancy-rich Bi2 O3 nanosheets coated with polypyrrole (Bi2 O3 @PPy NSs) are designed and synthesized, as precatalysts for selective electrocatalytic CO2 reduction to formate. Systematic material characterization demonstrated that Bi2 O3 @PPy precatalyst can evolve intoBi2 O2 CO3 @PPy nanosheets with rich oxygen vacancies (Bi2 O2 CO3 @PPy NSs) via electrolyte-mediated conversion and function as the real active catalyst for CO2 reduction reaction electrocatalysis. Coating catalyst with a PPy shell can modulate the interfacial microenvironment of active sites, which work in coordination with rich oxygen vacancies in Bi2 O2 CO3 and efficiently mediate directional selective CO2 reduction toward formate formation. With the fine-tuning of interfacial microenvironment, the optimized Bi2 O3 @PPy-2 NSs derived Bi2 O2 CO3 @PPy-2 NSs exhibit a maximum Faradaic efficiency of 95.8% at -0.8 V (versus. reversible hydrogen electrode) for formate production. This work might shed some light on designing advanced catalysts toward selective electrocatalytic CO2 reduction through local microenvironment engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA