Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Small ; : e2402488, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716752

RESUMO

Solar power generation, as a clean energy source, has significant potential for development. This work reports the recent efforts to address the challenge of low power conversion efficiency in photovoltaic devices by proposing the fabrication of a luminescence downshifting layer using polyvinyl chloride (PVC) with added fluorescent dots to enhance light utilization. A photoluminescent microsphere (HCPAM) is synthesized by cross-linking hexachlorocyclotriphosphazene, 2-iminobenzimidazoline, and polyethyleneimine. Low addition of HCPAM can improve the fire safety of PVC films, raising the limiting oxygen index of PVC to 32.4% and reducing the total heat release and smoke production rate values by 14.5% and 42.9%, respectively. Additionally, modified PVC film remains a transparency of 88% and shows down-conversion light properties. When the PVC+1%HCPAM film is applied to the solar cell, the short-circuit current density increases from 42.3 to 43.8 mA cm-2, resulting in a 7.0% enhancement in power conversion efficiency. HCPAM also effectively delays the photooxidative aging of PVC, particularly at a 3% content, maintaining the surface morphology and optical properties of PVC samples during ultraviolet aging. This study offers an innovative strategy to enhance the fire and UV-resistant performance of PVC films and expand their applications in protecting and efficiently utilizing photovoltaic devices.

2.
Environ Sci Technol ; 58(20): 8889-8898, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38685194

RESUMO

The slow reaction rates to chemical and photochemical degradation are well-known properties of plastics. However, large plastic surfaces exposed to environmental conditions release particles and compounds that affect ecosystems and human health. The aim of this work was to identify compounds associated with the degradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics (markers) on silica and sand and evaluate their use to screen microplastics on natural sand. Products were identified by using targeted and untargeted LC-HRMS analysis. All polymers underwent chemical oxidation on silica. PE released dicarboxylic acids (HO2C-(CH2)n-CO2H (n = 4-30), while PS released cis/trans-chalcone, trans-dypnone, 3-phenylpropiophenone, and dibenzoylmethane. PVC released dicarboxylic acids and aromatic compounds. Upon irradiation, PE was stable while PS released the same compounds as under chemical oxidation but at lower yields. Under the above condition, PVC generated HO2C-[CH2-CHCl]n-CH2-CO2H and HO2C-[CH2-CHCl]n-CO2H (n = 2-19) dicarboxylic acids. The same products were detected on sand but at a lower concentration than on silica due to better retention within the pores. Detection of markers of PE and PS on natural sand allowed us to screen microplastics by following a targeted analysis. Markers of PVC were not detected before or after thermal/photo-oxidation due to the low release of compounds and limitations associated with surface exposure/penetration of radiation.


Assuntos
Microplásticos , Plásticos , Polietileno/química , Monitoramento Ambiental , Biomarcadores Ambientais
3.
Environ Sci Technol ; 58(26): 11542-11553, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871676

RESUMO

Nanoplastics (NPs) are emerging pollutants and have been reported to cause the disintegration of anaerobic granular sludge (AnGS). However, the mechanism involved in AnGS disintegration was not clear. In this study, polyvinyl chloride nanoplastics (PVC-NPs) were chosen as target NPs and their long-term impact on AnGS structure was investigated. Results showed that increasing PVC-NPs concentration resulted in the inhibition of acetoclastic methanogens, syntrophic propionate, and butyrate degradation, as well as AnGS disintegration. At the presence of 50 µg·L-1 PVC-NPs, the hydrophobic interaction was weakened with a higher energy barrier due to the relatively higher hydrophilic functional groups in extracellular polymeric substances (EPS). PVC-NPs-induced ROS inhibited quorum sensing, significantly downregulated hydrophobic amino acid synthesis, whereas it highly upregulated the genes related to the synthesis of four hydrophilic amino acids (Cys, Glu, Gly, and Lys), resulting in a higher hydrophily degree of protein secondary structure in EPS. The differential expression of genes involved in EPS biosynthesis and the resulting protein secondary structure contributed to the greater hydrophilic interaction, reducing microbial aggregation ability. The findings provided new insight into the long-term impact of PVC-NPs on AnGS when treating wastewater containing NPs and filled the knowledge gap on the mechanism involved in AnGS disintegration by PVC-NPs.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Cloreto de Polivinila , Esgotos , Esgotos/microbiologia , Cloreto de Polivinila/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Anaerobiose , Interações Microbianas
4.
Environ Res ; 244: 117905, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101723

RESUMO

Polyvinyl chloride (PVC) waste plastic is a typical solid waste. In this paper, the dechlorination and carbonization behavior of PVC in ethanol-water/water system under different process parameters (temperature, residence time, solid-liquid ratio) was studied, and hydrothermal carbon was characterized by SEM, elemental analysis, TG-DTG, XPS, Py-GC/MS. The results show that temperature is the key to the hydrothermal dechlorination of PVC, and the dechlorination efficiency of PVC is the highest by parameter optimization (220°C-90 min-10% S/D-80% E/D), which can reach 96.33 %. With the removal of Cl, the surface of the PVC matrix changed from full and smooth flocculent to honeycomb with uniform pore size distribution. Thermogravimetric analysis shows that the combustion of hydrochar can be divided into three stages: HCl precipitation and volatile combustion, semi-coke and coke combustion, and fixed carbon combustion. The combustion parameters and kinetic parameters of hydrochar were measured, and it was found that the hydrothermal carbonization of PVC at higher temperatures and ethanol-water ratio could improve the combustion performance of hydrochar. The highest calorific value can reach 36.68 MJ/mol. Py-GC/MS analyzed the distribution of the pyrolysis products, and alkylbenzene and aliphatic were the main products of pyrolysis. The structural analysis of hydrochar showed that C-C and CC accounted for the largest proportion, accompanied by a small amount of C-O and CO and trace C-Cl. The possible reaction mechanism of the hydrothermal carbonization of PVC was analyzed based on the distribution of functional groups and compound composition. This work provides an effective and sustainable method for the recycling of refractory chlorinated plastics.


Assuntos
Coque , Cloreto de Polivinila , Cloreto de Polivinila/química , Água , Temperatura , Carbono
5.
BMC Urol ; 24(1): 122, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867233

RESUMO

BACKGROUND: Neurogenic bladder dysfunction is a major problem for spinal cord injury (SCI) patients not only due to the risk of serious complications but also because of the impact on quality of life. The main aim of this study is to compare the rate of urinary tract infection (UTI) associated with hydrophilic-coated catheters versus uncoated polyvinyl chloride (PVC) catheters among SCI patients presenting with functional neurogenic bladder sphincter disorders. METHODOLOGY: This was a retrospective cohort study from 2005 to 2020 including adult male or female patients who have an SCI at least more than 1 month ago with neurogenic bladder dysfunction and were using intermittent catheterization (single-use hydrophilic-coated or the standard-of-care polyvinyl chloride uncoated standard catheters) at least 3 times a day to maintain bladder emptying. RESULTS: A total of 1000 patients were selected and recruited through a stratified random sampling technique with 467 (47.60%) patients in the uncoated catheter arm and 524 (52.60%) in the coated catheter groups. The three outcome measures, namely: symptomatic UTI, Bacteriuria, and pyuria were significantly higher in the group using uncoated polyvinyl chloride (PVC) catheters compared to hydrophilic-coated catheters at the rate of 79.60% vs.46.60%, 81.10% vs. 64.69, and 53.57% versus 41.79% respectively. Males, elder patients, longer duration, and severity of SCI were associated with increased risk of symptomatic UTI. CONCLUSIONS: The results indicate a beneficial effect regarding clinical UTI when using hydrophilic-coated catheters in terms of fewer cases of symptomatic UTI. Bacteriuria is inevitable in patients with long-term catheterization, however, treatment should not be started unless the clinical symptoms exist. More attention should be given to the high-risk group for symptomatic UTIs.


Assuntos
Traumatismos da Medula Espinal , Bexiga Urinaria Neurogênica , Infecções Urinárias , Humanos , Estudos Retrospectivos , Traumatismos da Medula Espinal/complicações , Masculino , Feminino , Infecções Urinárias/etiologia , Infecções Urinárias/epidemiologia , Pessoa de Meia-Idade , Adulto , Cateteres Urinários/efeitos adversos , Cateterismo Uretral Intermitente/efeitos adversos , Interações Hidrofóbicas e Hidrofílicas , Cloreto de Polivinila , Estudos de Coortes , Idoso , Cateterismo Urinário/efeitos adversos , Infecções Relacionadas a Cateter/epidemiologia , Infecções Relacionadas a Cateter/etiologia
6.
Biodegradation ; 35(4): 451-468, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38289541

RESUMO

Microplastics pose significant challenges to ecosystems and organisms. They can be ingested by marine and terrestrial species, leading to potential health risks and ecological disruptions. This study aims to address the urgent need for effective remediation strategies by focusing on the biodegradation of microplastics, specifically polyvinyl chloride (PVC) derivatives, using the bacterial strain Bacillus albus. The study provides a comprehensive background on the accumulation of noxious substances in the environment and the importance of harnessing biodegradation as an eco-friendly method for pollutant elimination. The specific objective is to investigate the enzymatic capabilities of Bacillus albus, particularly the alpha/beta hydrolases (ABH), in degrading microplastics. To achieve this, in-silico studies were conducted, including analysis of the ABH protein sequence and its interaction with potential inhibitors targeting PVC derivatives. Docking scores of - 7.2 kcal/mol were obtained to evaluate the efficacy of the interactions. The study demonstrates the promising bioremediation prospects of Bacillus albus for microplastics, highlighting its potential as a key player in addressing microplastic pollution. The findings underscore the urgent need for further experimental validation and practical implementation of Bacillus albus in environmental remediation strategies.


Assuntos
Bacillus , Biodegradação Ambiental , Cloreto de Polivinila , Bacillus/enzimologia , Bacillus/metabolismo , Cloreto de Polivinila/química , Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Microplásticos/metabolismo , Simulação de Acoplamento Molecular
7.
Ecotoxicol Environ Saf ; 278: 116422, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705040

RESUMO

Although more attention has been paid to microplastics (MPs) pollution in environment, research on the synthetic influence of microplastic and heavy metals remains limited. To help fill this information gap, we investigated the adsorption behavior of virgin polyvinyl chloride microplastics (PVCMPs) (≤450 µm white spherical powder) on cadmium (II). The effects on seed germination, seedling growth, photosynthetic system, oxidative stress indicators of lettuce, and changes in Cd bioavailability were evaluated under Cd2+ (25 µmol/L), PVCMPs (200 mg/L), and PVCMP-Cd combined (200 mg/L + 25 µmol/L) exposures in hydroponic system. The results demonstrated that the PVCMPs effectively adsorbed Cd ions, which validated by the pseudo-second-order kinetic and the Langmuir isotherm models, indicating the sorption of Cd2+ on the PVCMPs was primary chemisorption and approximates monomolecular layer sorption. Compared to MPs, Cd significantly inhibits plant seed germination and seedling growth and development. However, Surprising improvement in seed germination under PVCMPs-Cd exposure was observed. Moreover, Cd2+ and MPs alone or combined stress caused oxidative stress with reactive oxygen species (ROS) including H2O2, O2- and Malondialdehyde (MDA) accumulation in plants, and substantially damaged to photosynthesis. With the addition of PVCMPs, the content of Cd in the leaves significantly (P<0.01) decreased by 1.76-fold, and the translocation factor and Cd2+removal rate in the water substantially (P<0.01) decreased by 6.73-fold and 1.67-fold, respectively in contrast to Cd2+ stress alone. Therefore, it is concluded the PVCMP was capable of reducing Cd contents in leaves, alleviating Cd toxicity in lettuce. Notably, this study provides a scientific foundation and reference for comprehending the toxicological interactions between microplastics and heavy metals in the environment.


Assuntos
Cádmio , Germinação , Hidroponia , Lactuca , Microplásticos , Estresse Oxidativo , Poluentes Químicos da Água , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Cádmio/toxicidade , Microplásticos/toxicidade , Germinação/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fotossíntese/efeitos dos fármacos , Adsorção , Cloreto de Polivinila , Espécies Reativas de Oxigênio/metabolismo
8.
Ecotoxicol Environ Saf ; 283: 116847, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128451

RESUMO

Plastics are widely used worldwide due to their convenience. However, microplastics (MPs) accumulation poses a serious threat to ecosystem health. Therefore, understanding the effects of MPs on living organisms within their native ecosystem is crucial. Previous studies have primarily focused on the impacts of MPs in aquatic environments, whereas the effects of MPs on terrestrial ecosystems have remained largely understudied. Therefore, our study assessed the impacts of MPs on soil ecosystems by characterizing their toxic effects on earthworms (Eisenia fetida). Here, we exposed earthworms to two representative plastics within soil environments: polyvinyl chloride (PVC) and low-density polyethylene (LDPE). Given the known link between MPs and oxidative stress, we next quantified oxidative stress markers and mitochondrial function to assess the effects of MPs on the redox metabolism of earthworms. Mitochondria are crucial metabolic organelles that generate reactive oxygen species via uncontrolled ATP production. Our findings demonstrated that MPs exert different effects depending on their type. Neither the PVC-exposed groups nor the LDPE-exposed groups exhibited changes in oxidative stress, as worked by the action of superoxide dismutase (SOD) and glutathione (GSH). While treatment of the two types of MP did not significantly affect the amount of reactive oxygen species/reactive nitrogen species (ROS/RNS) generated, PVC exhibited a more pronounced effect on antioxidant system compared to LDPE. However, mitochondrial function was markedly decreased in the group exposed to high LDPE concentrations, suggesting that the examined LDPE concentrations were too low to activate compensatory mechanisms. Collectively, our findings demonstrated that exposure of MPs not only influences the antioxidant defense mechanisms of earthworms but also alters their mitochondrial function depending on their types.

9.
Am J Otolaryngol ; 45(4): 104366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729016

RESUMO

PURPOSE: This study investigated dimension changes of various nasopharyngeal airways, including a novel self-supporting device, after saline submersion at body temperature to simulate in-vivo use. Dimension changes over time may reduce efficacy during long-term use and require sizing adjustments or limits on duration of use. MATERIALS AND METHODS: Cuffless Covidien endotracheal tubes, pediatric Rusch fixed flange polyvinyl chloride nasal airway tubes, pediatric Rusch Robertazzi style Mediprene nasal airway tubes, and novel silicone elastomer self-supporting nasopharyngeal airways were fully submerged in 0.9 % normal saline solution incubated at 37 degrees Celsius for 15 days. All devices had tube length and wall thickness measured after 0, 1, 2, 3, 4, 5, 10, and 15 days. The 95 % confidence intervals of tube dimensions at each date were compared with the 95 % confidence intervals at day 0. RESULTS: The Covidien ET tube, Rusch PVC NPA, and ssNPA tube lengths and wall thicknesses did not change significantly over 15 days. The Rusch Mediprene NPAs had a statistically significant increase in length starting at day 1 and wall thickness at day 2. CONCLUSIONS: The novel ssNPA did not expand in the in-vitro environment, supporting its safety for extended use. The PVC NPA and ET tube dimensions also remained stable. However, the Rusch Mediprene NPAs had significant length expansion after 1 day of submersion, indicating a considerable risk of expansion during extended use with potential implications for patient care. Silicone and PVC NPA dimensions remained stable when saturated, indicating these materials may be more appropriate for extended use.


Assuntos
Temperatura Corporal , Nasofaringe , Impressão Tridimensional , Solução Salina , Humanos , Desenho de Equipamento , Intubação Intratraqueal/instrumentação , Intubação Intratraqueal/métodos
10.
J Environ Manage ; 355: 120402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428183

RESUMO

Interactions of microplastics (MPs) biofilm with antibiotic resistance genes (ARGs) and antibiotics in aquatic environments have made microplastic biofilm an issue of keen scholarly interest. The process of biofilm formation and the degree of ARGs enrichment in the presence of antibiotic-selective pressure and the impact on the microbial community need to be further investigated. In this paper, the selective pressure of ciprofloxacin (CIP) and illumination conditions were investigated to affect the physicochemical properties, biomass, and extracellular polymer secretion of polyvinyl chloride (PVC) microplastic biofilm. In addition, relative copy numbers of nine ARGs were analyzed by real-time quantitative polymerase chain reaction (qPCR). In the presence of CIP, microorganisms in the water and microplastic biofilm were more inclined to carry associated ARGs (2-3 times higher), which had a contributing effect on ARGs enrichment. The process of pre-microplastic biofilm formation might have an inhibitory effect on ARGs (total relative abundance up to 0.151) transfer and proliferation compared to the surrounding water (total relative abundance up to 0.488). However, in the presence of CIP stress, microplastic biofilm maintained the abundance of ARGs (from 0.151 to 0.149) better compared to the surrounding water (from 0.488 to 0.386). Therefore, microplastic biofilm act as abundance buffer island of ARGs stabilizing the concentration of ARGs. In addition, high-throughput analyses showed the presence of antibiotic-resistant (Pseudomonas) and pathogenic (Vibrio) microorganisms in biofilm under different conditions. The above research deepens our understanding of ARGs enrichment in biofilm and provides important insights into the ecological risks of interactions between ARGs, antibiotics, and microplastic biofilm.


Assuntos
Microplásticos , Plásticos , Genes Bacterianos , Rios , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Ciprofloxacina , Água , Biofilmes
11.
Water Sci Technol ; 89(8): 2105-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678412

RESUMO

Photodynamic processes have found widespread application in therapies. These processes involve photosensitizers (PSs) that, when excited by specific light wavelengths and in the presence of molecular oxygen, generate reactive oxygen species (ROS), that target cells leading to inactivation. Photodynamic action has gained notable attention in environmental applications, particularly against pathogens and antibiotic-resistant bacteria (ARB) that pose a significant challenge to public health. However, environmental matrices frequently encompass additional contaminants and interferents, including microplastics (MPs), which are pollutants of current concern. Their presence in water and effluents has been extensively documented, highlighting their impact on conventional treatment methods, but this information remains scarce in the context of photodynamic inactivation (PDI) setups. Here, we described the effects of polyvinyl chloride (PVC) microparticles in PDI targeting Staphylococcus aureus and its methicillin-resistant strain (MRSA), using curcumin as a PS under blue light. The presence of PVC microparticles does not hinder ROS formation; however, depending on its concentration, it can impact bacterial inactivation. Our results underscore that PDI remains a potent method for reducing bacterial concentrations in water and wastewater containing ARB, even in highly contaminated scenarios with MPs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Microplásticos , Cloreto de Polivinila , Staphylococcus aureus , Cloreto de Polivinila/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
12.
Environ Sci Technol ; 57(8): 3095-3103, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36799869

RESUMO

Chlorinated paraffins (CPs) as plasticizers are massively added to polyvinyl chloride (PVC) products, during whose life cycle CPs can be continuously released especially under thermal stress. In this study, a PVC cable sheath was adopted as a representative kind of PVC material to investigate the release behaviors of short- and medium-chain CPs (SCCPs and MCCPs) under thermal treatment. Release percentages of CPs with increasing temperature followed a Gaussian-like curve. At the unmolten stage of 80 °C, heating for 10 min caused 0.051% of added SCCPs and 0.029% of added MCCPs to be released. At the molten stage of 270 °C, accumulative release rates of SCCPs and MCCPs within 10 min were up to 30 and 14%, respectively. The developed emission model indicated that material-gas partitioning and internal diffusion simultaneously governed the release of CPs. During thermal treatment, the release of CPs could be remarkably affected by the thermal expansion of the PVC material and the formation of breakage and micropores. Congener group profiles of released CPs indicated a slight fractionation effect for SCCPs during the release process. Furthermore, the release risk of CPs from the whole life cycle of PVC products was preliminarily evaluated.


Assuntos
Hidrocarbonetos Clorados , Parafina , Parafina/análise , Hidrocarbonetos Clorados/análise , Monitoramento Ambiental , Plastificantes , Fracionamento Químico , China
13.
J Toxicol Environ Health A ; 86(11): 347-360, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37073468

RESUMO

Recycled polyvinyl chloride (PVC) microplastics have been detected in the aquatic environment. These recycled microparticles contain chemicals that are released into the environment reaching different organisms. Although the problem of the presence of recycled PVC microparticles in the environment is evident, the toxicological consequences of this contaminant to exposed organisms remains to be better determined. The aim of this study was to investigate the toxicity attributed to exposure to environmentally relevant concentrations of recycled PVC microplastics in adult zebrafish (Danio rerio). The experimental groups were: negative control, vehicle control, positive control, and recycled microplastics (20 ± 5 µm) at 5, 10 or 20 µg/L. Zebrafish (D. rerio) were exposed to respective treatments for 96 hr. Locomotion and oxidative status parameters were measured and mortality recorded. The positive control group presented increased mortality rates and decreased locomotor activity. Animals from the vehicle group did not show marked differences. Finally, no significant disturbances were found in survival rate, locomotion pattern and oxidative status of animals exposed to recycled PVC microparticles at 5, 10 or 20 µg/L. Taken together our results suggest that recycled PVC microplastics in this particle size range do not appear to exert harmful effects on exposed adult D. rerio. However, these results need to be carefully observed due to limitations including size of particle and duration of exposure parameters that might affect ecological consequences. It is suggested that additional studies applying other particles sizes and chronic exposure are needed to more comprehensively verify the toxicity of the contaminant investigated here.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Peixe-Zebra , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade
14.
Am J Ind Med ; 66(12): 1033-1047, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742097

RESUMO

BACKGROUND: Plastic debris pervades our environment. Some breaks down into microplastics (MPs) that can enter and distribute in living organisms causing effects in multiple target organs. MPs have been demonstrated to harm animals through environmental exposure. Laboratory animal studies are still insufficient to evaluate human impact. And while MPs have been found in human tissues, the health effects at environmental exposure levels are unclear. AIM: We reviewed and summarized existing evidence on health effects from occupational exposure to MPs. Additionally, the diverse effects documented for workers were organized by MP type and associated co-contaminants. Evidence of the unique effects of polyvinyl chloride (PVC) on liver was then highlighted. METHODS: We conducted two stepwise online literature reviews of publications focused on the health risks associated with occupational MP exposures. This information was supplemented with findings from animal studies. RESULTS: Our analysis focused on 34 published studies on occupational health effects from MP exposure with half involving exposure to PVC and the other half a variety of other MPs to compare. Liver effects following PVC exposure were reported for workers. While PVC exposure causes liver toxicity and increases the risk of liver cancers, including angiosarcomas and hepatocellular carcinomas, the carcinogenic effects of work-related exposure to other MPs, such as polystyrene and polyethylene, are not well understood. CONCLUSION: The data supporting liver toxicity are strongest for PVC exposure. Overall, the evidence of liver toxicity from occupational exposure to MPs other than PVC is lacking. The PVC worker data summarized here can be useful in assisting clinicians evaluating exposure histories from PVC exposure and designing future cell, animal, and population exposure-effect research studies.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Cloreto de Polivinila/toxicidade , Exposição Ambiental , Fígado , Poluentes Químicos da Água/toxicidade
15.
Ecotoxicol Environ Saf ; 267: 115637, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944461

RESUMO

A variety of microplastics (MPs) have become ubiquitous environmental pollutants, leading to inevitable human contact and health impacts. Most previous research has explored the toxic effects of a single type of MPs exposure. However, the effects of co-exposure to both common types of MPs, polyvinyl chloride (PVC) and polystyrene (PS) MPs on mammals have not been explored. Here, adult mice were exposed to PS-PVC (1.0 µm PS and 2.0 µm PVC both at the concentration of 0.5 mg/day) for 60 days. The results showed that PS-PVC co-exposure-induced hepatotoxicity was evidenced by liver histopathological changes, the release of inflammatory cytokines, and the activation of oxidative stress. Moreover, the intestinal mucosal barrier was damaged after PS-PVC treatment. The results of 16S rRNA gene sequencing reported there was a marked shift in the gut microbial structure accompanied by decreased relative abundances of probiotics, such as Clostridium, Lachnospiraceae_UCG-006, Desulfovibrio, Clostridiales_unclassified and Ruminococcaceae_unclassified and increased the conditional pathogen abundances, such as Erysipelatoclostridium. Furthermore, the triglyceride (TG) and total cholesterol (TCH) expression levels in the serum and liver were increased after PS-PVC co-exposure. Serum metabolomics analysis showed that there were 717 differential expression metabolites found in the positive- and negative-ion modes, including 476 up-regulated and 241 down-regulated, mainly enriched in butyrate metabolism, thiamine metabolism, and phenylacetate metabolism. In addition, remarked changes in the gut microbiota and serum metabolic profiles were closely related to hepatic and intestinal injuries after PS-PVC co-exposure. These results have provided new insights into the toxic effects of PS and PVC MPs co-exposure through the gut-liver axis and the health risks of PS and PVC MPs should be paid more attention to humans.


Assuntos
Microbioma Gastrointestinal , Poliestirenos , Humanos , Animais , Camundongos , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/metabolismo , Plásticos/toxicidade , Cloreto de Polivinila/toxicidade , RNA Ribossômico 16S/metabolismo , Fígado , Homeostase , Mamíferos
16.
Ecotoxicol Environ Saf ; 252: 114618, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36774799

RESUMO

As a burgeoning pollutant, microplastics (MPs) has elicited global concern. However, ecological effects and mechanisms of MPs on plant-soil system are still poorly understood. In the present study, the impacts of polyvinyl chloride microplastics (PVC-MPs) on maize (Zea mays L.) seedlings growth and physiological traits and soil properties were discussed through a 30-day pot experiment. Results showed that PVC-MPs had greater toxicity effect on seedlings shoot biomass than root biomass. To defense the impact of PVC-MPs, the superoxide dismutase and catalase activities in seedlings leaf were stimulated. Moreover, the adhesion of MPs on soil particles increased, and soil microorganism, enzymes, and nutrients were altered significantly with increasing content of PVC-MPs. Notably, soil nitrate nitrogen decreased significantly with increasing content of PVC-MPs, whereas soil ammonium nitrogen was promoted under lower contents (0.1% and 1%) of PVC-MPs. Redundancy analysis indicated that soil nitrate nitrogen and ammonium nitrogen can explain 87.4% and 7.7% of variation in maize seedlings growth and physiological traits, respectively. These results display that maize seedlings shoot is more susceptible to the impact of PVC-MPs and soil available nitrogen is the primary limiting factor on maize seedlings growth and physiological traits triggered by PVC-MPs. Impacts of PVC-MPs on maize seedlings growth and physiological traits by nitrogen depletion lead to the possible yield and economic loess and potential risks due to the over use of nitrogen fertilizers.


Assuntos
Compostos de Amônio , Microplásticos , Plântula , Plásticos/toxicidade , Zea mays , Cloreto de Polivinila/toxicidade , Nitratos/toxicidade , Solo , Nitrogênio , Compostos Orgânicos
17.
Ecotoxicol Environ Saf ; 267: 115659, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944467

RESUMO

Plastic pollution has become a global issue nowadays. Due to the increased population in developing countries, we largely depend on fish from our aquaculture industry to meet the required protein demand. Though several studies documented plastic ingestion in freshwater and marine organisms, very limited studies have been conducted to elucidate microplastic (MP) contamination in commercial fish feed. Therefore, this study was designed to identify, quantify, and characterize microplastics (MPs) in commercial fish feeds in Bangladesh and assess possible health risks in fish consuming different commercial fish feeds. All fish feed samples were 100 % contaminated with MPs, where the mean abundance of MPs ranged between 500 and 2200 MPs/kg. No significant differences among different types of feeds (e.g., starter, grower, and finisher) were observed in terms of MPs abundance (F = 0.999, p = 0.385). This study revealed that fiber was the most dominant shape of MPs (90 %), while the most dominant color of MPs was red (34 %), followed by black (31 %) and blue (19 %). The 100-1500 µm size class covers 88 % of the total MPs in the collected fish feed samples. Identified polymers in the samples were polyethylene (PE, 37.71 %), polyvinyl chloride (PVC, 27.14 %), polypropylene (PP, 22.08 %), and polyethylene terephthalate (PET, 13.07 %), respectively, where PE and PVC fall under the risk category IV to V. The Pollution load index (PLI) values of all fish feed samples were <10, indicating the risk category of I (low risk). Therefore, this study highly recommended avoiding plastic materials in the packaging and storing purposes of feed ingredients in the feed mills to ensure contamination-free fish feed for sustainable aquaculture.


Assuntos
Países em Desenvolvimento , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Aquicultura , Peixes , Polietileno , Monitoramento Ambiental
18.
Sensors (Basel) ; 23(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896559

RESUMO

Pipelines remain the safest means of transporting natural gas and petroleum products. Nonetheless, the pipeline infrastructure in the US is facing major challenges, especially in terms of corrosion of steel/metallic pipes and excavation damage of onshore pipelines (leading to oil spills, explosions, and deaths). Corrosion of metallic pipelines can be avoided by using non-corrosive materials such as plastic pipes for low-pressure applications and glass-fiber-reinforced polymer (GFRP) composite pipes for transporting high-pressure oil and natural gas. However, buried non-metallic pipelines are not easily detectable, which can lead to increased excavation damage during construction and rehabilitation work. Alternative strategies for making buried non-metallic pipes easily locatable using ground-penetrating radar (GPR) were investigated in this study. Results from this study have shown that using carbon fabric or an aluminum foil overlay on non-metallic pipes before burying in soil significantly increases the reflected GPR signal amplitude, thereby making it easier to locate such pipelines. The reflected GPR signal amplitude for pipe sections with carbon fabric or aluminum foil overlays was found to have increased by a factor of up to 4.5 over the control samples. The results also highlight the importance of selecting the appropriate antenna frequency for GPR surveys, since wet silt loam soil and clay significantly reduce the penetration depths of the radar signals produced by the GPR antennae.

19.
Bull Environ Contam Toxicol ; 112(1): 5, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063888

RESUMO

Recent studies have shown that the microplastics in waste activated sludge (WAS) can directly reduce the microbial activity and influence the performance of anaerobic digestion. Unfortunately, few studies paid attention on the interactions between WAS and MPs, since MPs could impact the contact between sludge flocs and microorganisms. We found that PVC-MP changed the interfacial energy properties of the WAS surface and affected methane production. Low concentration (40 mg/L) of PVC-MP changed the water affinity and greatly reduced the energy barrier of interfacial reaction. Simultaneously, WAS surface charge characteristics changed with increasing MPs concentration, which made the sludge difficult to contact with microorganisms. The change process of WAS surface functional groups also indicated that PVC-MP first cover the sludge surface to prevent from being utilized by microorganisms, and then affect the surface protein structure before toxic substances leaching. Our study provides new insights into how MPs affect anaerobic digestion.


Assuntos
Microplásticos , Esgotos , Esgotos/química , Microplásticos/metabolismo , Plásticos , Cloreto de Polivinila , Anaerobiose , Eliminação de Resíduos Líquidos , Reatores Biológicos , Metano
20.
Shokuhin Eiseigaku Zasshi ; 64(4): 145-153, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37673604

RESUMO

We determined the fifteen types of plasticizers, including four kinds of phthalic acid esters (PAEs) used in 220 polyvinyl chloride (PVC) toys on Japanese market from 2019 to 2020. Three kinds of previously undetected types of PAEs were also detected, but not identified in this study. Di (2-ethylhexyl) terephthalate (DEHTP) was the highest detection rate in 209 soft PVC toys out of 220 toys, with 71.2% for designated toys and 88.9% for not-designated toys, respectively, showing a gradual increase from the previous reports in 2009 and 2014. On the other hand, the usages of o-acetyl tributyl citrate and adipic acid esters decreased, but the six types of PAEs prohibited to use for the designated toys in Japan were not detected in them, the usage of diisobutyl phthalate were increased. In contrast, four types of PAEs were detected in not-designated toys. Among them, the detection ratio of di (2-ethyhexyl) phthalate decreased to about 1/10. The content levels of plasticizers in per each sample were continued to keep low level from the report five years ago. These results showed that the main plasticizer used in PVC toys is DEHTP, and that the usage of other plasticizers was decreased.


Assuntos
Plastificantes , Cloreto de Polivinila , Ésteres , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA