Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922612

RESUMO

Genetic lesions predisposing to pediatric B-cell acute lymphoblastic leukemia (B-ALL) arise in utero, generating a clinically silent pre-leukemic phase. We here reviewed the role of the surrounding bone marrow (BM) microenvironment in the persistence and transformation of pre-leukemic clones into fully leukemic cells. In this context, inflammation has been highlighted as a crucial microenvironmental stimulus able to promote genetic instability, leading to the disease manifestation. Moreover, we focused on the cross-talk between the bulk of leukemic cells with the surrounding microenvironment, which creates a "corrupted" BM malignant niche, unfavorable for healthy hematopoietic precursors. In detail, several cell subsets, including stromal, endothelial cells, osteoblasts and immune cells, composing the peculiar leukemic niche, can actively interact with B-ALL blasts. Through deregulated molecular pathways they are able to influence leukemia development, survival, chemoresistance, migratory and invasive properties. The concept that the pre-leukemic and leukemic cell survival and evolution are strictly dependent both on genetic lesions and on the external signals coming from the microenvironment paves the way to a new idea of dual targeting therapeutic strategy.


Assuntos
Medula Óssea/patologia , Células-Tronco Hematopoéticas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Nicho de Células-Tronco , Microambiente Tumoral , Animais , Progressão da Doença , Humanos
2.
Br J Haematol ; 190(2): 262-273, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32118299

RESUMO

ETV6-RUNX1 (E/R) fusion gene, arising in utero from translocation t(12;21)(p13:q22), is the most frequent alteration in childhood acute lymphoblastic leukemia (ALL). However, E/R is insufficient to cause overt leukemia since it generates a clinically silent pre-leukemic clone which persists in the bone marrow but fails to out-compete normal progenitors. Conversely, pre-leukemic cells show increased susceptibility to transformation following additional genetic insults. Infections/inflammation are the most accredited triggers for mutations accumulation and leukemic transformation in E/R+ pre-leukemic cells. However, precisely how E/R and inflammation interact in promoting leukemia is still poorly understood. Here we demonstrate that IL6/TNFα/ILß pro-inflammatory cytokines cooperate with BM-MSC in promoting the emergence of E/R+ Ba/F3 over their normal counterparts by differentially affecting their proliferation and survival. Moreover, IL6/TNFα/ILß-stimulated BM-MSC strongly attract E/R+ Ba/F3 in a CXCR2-dependent manner. Interestingly, E/R-expressing human CD34+ IL7R+ progenitors, a putative population for leukemia initiation during development, were preserved in the presence of BM-MSC and IL6/TNFα/ILß compared to their normal counterparts. Finally, the extent of DNA damage increases within the inflamed niche in both control and E/R-expressing Ba/F3, potentially leading to transformation in the apoptosis-resistant pre-leukemic clone. Overall, our data provide new mechanistic insights into childhood ALL pathogenesis.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Translocação Genética
3.
Ann Hematol ; 99(10): 2329-2338, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32821971

RESUMO

Patients with the pre-leukemia bone marrow failure syndrome called severe congenital neutropenia (CN) have an approximately 15% risk of developing acute myeloid leukemia (AML; called here CN/AML). Most CN/AML patients co-acquire CSF3R and RUNX1 mutations, which play cooperative roles in the development of AML. To establish an in vitro model of leukemogenesis, we utilized bone marrow lin- cells from transgenic C57BL/6-d715 Csf3r mice expressing a CN patient-mimicking truncated CSF3R mutation. We transduced these cells with vectors encoding RUNX1 wild type (WT) or RUNX1 mutant proteins carrying the R139G or R174L mutations. Cells transduced with these RUNX1 mutants showed diminished in vitro myeloid differentiation and elevated replating capacity, compared with those expressing WT RUNX1. mRNA expression analysis showed that cells transduced with the RUNX1 mutants exhibited hyperactivation of inflammatory signaling and innate immunity pathways, including IL-6, TLR, NF-kappaB, IFN, and TREM1 signaling. These data suggest that the expression of mutated RUNX1 in a CSF3R-mutated background may activate the pro-inflammatory cell state and inhibit myeloid differentiation.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/patologia , Células Mieloides/patologia , Mielopoese/genética , Neutropenia/congênito , Pré-Leucemia/genética , Receptores de Fator Estimulador de Colônias/genética , Animais , Divisão Celular , Ensaio de Unidades Formadoras de Colônias , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Perfilação da Expressão Gênica , Imunidade Inata , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutropenia/genética , Neutropenia/patologia , Pré-Leucemia/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Fator Estimulador de Colônias/fisiologia , Proteínas Recombinantes/genética , Organismos Livres de Patógenos Específicos
4.
Ann Diagn Pathol ; 21: 53-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27040932

RESUMO

Patients with chronic myelogenous leukemia (CML) present typically with an elevated white blood cell count (WBC) and cytogenetic or molecular genetic evidence of t(9;22)/BCR-ABL1 fusion gene. Rarely, CML patients may present with a normal or mildly elevated WBC and are asymptomatic, and we describe 7 patients in this study. The WBC in these patients ranged from 3.6 to 14.3 K/mm(3) with 50% to 73% granulocytes and 0% blasts. In all patients, t(9;22)(q34;q11.2) was detected by conventional cytogenetics, and BCR-ABL1 fusion was shown, supporting the diagnosis of preleukemic CML (pre-CML). We compared these patients with a group of 5 cases of CML in chronic phase (CML-CP) and 5 bone marrow specimens with a leukemoid reaction (n=5). Reticulin, CD34, and CD61 immunostains were performed on all bone marrow biopsy specimens. Peripheral blood absolute basophilia (≥200/mm(3)) was noted in only 4 of 7 pre-CML cases, whereas it was present in all CML-CP cases and absent in leukemoid reaction cases. The mean ±SD of microvascular density of pre-CML cases (10.0 ± 4.3 vessels/200× field) was twice that of leukemoid reaction cases (5.0 ± 1.0) (P=.02; Student t test) but similar to that of CML-CP cases (12.5 ± 3.6). Microvessels in pre-CML, highlighted by CD34, were tortuous with abnormal branching, although to a lesser extent than those found in CML-CP. Microvessels in leukemoid reaction were generally straight. The percentage of small, hypolobated megakaryocytes, highlighted by CD61 in pre-CML, was 40%, 3 times that found in leukemoid reaction cases (13%) but less than that of CML-CP cases (86%). We conclude that pre-CML should be suspected in patients with a normal to mildly elevated WBC and absolute basophilia. Bone marrow examination can usually distinguish pre-CML from a leukemoid reaction based on the percentage of small, hypolobated megakaryocytes; microvascular density; and morphologic features.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Reação Leucemoide/diagnóstico , Cromossomo Filadélfia , Adulto , Idoso , Medula Óssea/patologia , Feminino , Humanos , Hibridização in Situ Fluorescente , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Reação Leucemoide/genética , Reação Leucemoide/metabolismo , Contagem de Leucócitos , Masculino , Megacariócitos/patologia , Microvasos/patologia , Pessoa de Meia-Idade
5.
Cell Stem Cell ; 28(5): 906-922.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894142

RESUMO

Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome that can evolve to acute myeloid leukemia (AML). Mutations in CSF3R and RUNX1 are frequently observed in CN patients, although how they drive the transition from CN to AML (CN/AML) is unclear. Here we establish a model of stepwise leukemogenesis in CN/AML using CRISPR-Cas9 gene editing of CN patient-derived iPSCs. We identified BAALC upregulation and resultant phosphorylation of MK2a as a key leukemogenic event. BAALC deletion or treatment with CMPD1, a selective inhibitor of MK2a phosphorylation, blocked proliferation and induced differentiation of primary CN/AML blasts and CN/AML iPSC-derived hematopoietic stem and progenitor cells (HSPCs) without affecting healthy donor or CN iPSC-derived HSPCs. Beyond detailing a useful method for future investigation of stepwise leukemogenesis, this study suggests that targeting BAALC and/or MK2a phosphorylation may prevent leukemogenic transformation or eliminate AML blasts in CN/AML and RUNX1 mutant BAALC(hi) de novo AML.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Neutropenia , Síndrome Congênita de Insuficiência da Medula Óssea , Humanos , Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas de Neoplasias/genética , Neutropenia/congênito , Neutropenia/genética , Oncogenes
6.
Front Immunol ; 10: 116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891028

RESUMO

High frequency of acquired CSF3R (colony stimulating factor 3 receptor, granulocyte) mutations has been described in patients with severe congenital neutropenia (CN) at pre-leukemia stage and overt acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Here, we report the establishment of an ultra-sensitive deep sequencing of a CSF3R segment encoding the intracellular "critical region" of the G-CSFR known to be mutated in CN-MDS/AML patients. Using this method, we achieved a mutant allele frequency (MAF) detection rate of 0.01%. We detected CSF3R mutations in CN patients with different genetic backgrounds, but not in patients with other types of bone marrow failure syndromes chronically treated with G-CSF (e.g., Shwachman-Diamond Syndrome). Comparison of CSF3R deep sequencing results of DNA and cDNA from the bone marrow and peripheral blood cells revealed the highest sensitivity of cDNA from the peripheral blood polymorphonuclear neutrophils. This approach enables the identification of low-frequency CSF3R mutant clones, increases sensitivity, and earlier detection of CSF3R mutations acquired during the course of leukemogenic evolution of pre-leukemia HSCs of CN patients. We suggest application of sequencing of the entire CSF3R gene at diagnosis to identify patients with inherited lost-of-function CSF3R mutations and annual ultra-deep sequencing of the critical region of CSF3R to monitor acquisition of CSF3R mutations.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Detecção Precoce de Câncer/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Mieloide Aguda/genética , Mutação/genética , Síndromes Mielodisplásicas/genética , Neutropenia/congênito , Receptores de Fator Estimulador de Colônias/genética , Adolescente , Carcinogênese/genética , Criança , Análise Mutacional de DNA , Progressão da Doença , Feminino , Humanos , Masculino , Neutropenia/genética , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença
7.
Semin Hematol ; 54(1): 43-50, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28088988

RESUMO

Cancer results from multistep pathogenesis, yet the pre-malignant states that precede the development of many hematologic malignancies have been difficult to identify. Recent genomic studies of blood DNA from tens of thousands of people have revealed the presence of remarkably common, age-associated somatic mutations in genes associated with hematologic malignancies. These somatic mutations drive the expansion from a single founding cell to a detectable hematopoietic clone. Owing to the admixed nature of blood that provides a sampling of blood cell production throughout the body, clonal hematopoiesis is a rare view into the biology of pre-malignancy and the direct effects of pre-cancerous lesions on organ dysfunction. Indeed, clonal hematopoiesis is associated not only with increased risk of hematologic malignancy, but also with cardiovascular disease and overall mortality. Here we review rapid advances in the genetic understanding of clonal hematopoiesis and nascent evidence implicating clonal hematopoiesis in malignant and non-malignant age-related disease.


Assuntos
Senescência Celular/genética , Hematopoese/genética , Humanos , Mutação
8.
Front Cell Dev Biol ; 5: 111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326930

RESUMO

RUNX1 is a recurrently mutated gene in sporadic myelodysplastic syndrome and leukemia. Inherited mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). In sporadic AML, mutations in RUNX1 are usually secondary events, whereas in FPD/AML they are initiating events. Here we will describe mutations in RUNX1 in sporadic AML and in FPD/AML, discuss the mechanisms by which inherited mutations in RUNX1 could elevate the risk of AML in FPD/AML individuals, and speculate on why mutations in RUNX1 are rarely, if ever, the first event in sporadic AML.

9.
Int J Hematol ; 105(1): 17-22, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27848178

RESUMO

The TET dioxygenases, TET1, TET2, and TET3, catalyze transfer of an oxygen atom to the methyl group of 5-methylcytocine (5-mC), converting it to 5-hydroxymethylcytocine (5-hmC). Among the genes encoding these enzymes, ten-eleven translocation 2 (TET2) is frequently mutated somatically in both myeloid and lymphoid malignancies. Because these TET2 mutations result in the impairment of the dioxygenase activity of TET2, it is thought that these mutations interfere with 5-mC to 5-hmC conversion. There is ample evidence indicating that TET2 mutations are a driver of tumorigenesis in blood cells and that TET2 mutations are often acquired at the hematopoietic stem/early progenitor cell stage. In addition, TET2 is the second-most frequently mutated gene in clonal hematopoiesis in individuals with no apparent blood cancers, suggesting that while TET2 mutations alone are insufficient to cause hematologic malignancy, they represent an early event during tumorigenesis. A number of questions, including the precise target genome regions of TET2, and the importance of the balance of 5-mC and 5-hmC in the regulatory regions in transcriptional control, remain.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Animais , Carcinogênese/genética , Metilação de DNA , Dioxigenases , Humanos , Translocação Genética
10.
Int J Hematol ; 102(5): 528-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25644149

RESUMO

Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.


Assuntos
Transformação Celular Neoplásica , Células-Tronco Hematopoéticas , Leucemia Linfocítica Crônica de Células B , Linfócitos , Células-Tronco Neoplásicas , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Linfócitos/metabolismo , Linfócitos/patologia , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
11.
Oncotarget ; 8(47): 81731-81732, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137216
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA