Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Prostate ; 82(5): 517-530, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35014711

RESUMO

INTRODUCTION: The Wnt proteins play key roles in the development, homeostasis, and disease progression of many organs including the prostate. However, the spatiotemporal expression patterns of Wnt proteins in prostate cell lineages at different developmental stages and in prostate cancer remain inadequately characterized. METHODS: We isolated the epithelial and stromal cells in the developing and mature mouse prostate by flow cytometry and determined the expression levels of Wnt ligands. We used Visium spatial gene expression analysis to determine the spatial distribution of Wnt ligands in the mouse prostatic glands. Using laser-capture microscopy in combination with gene expression analysis, we also determined the expression patterns of Wnt signaling components in stromal and cancer cells in advanced human prostate cancer specimens. To investigate how the stroma-derived Wnt ligands affect prostate development and homeostasis, we used a Col1a2-CreERT2 mouse model to disrupt the Wnt transporter Wntless specifically in prostate stromal cells. RESULTS: We showed that the prostate stromal cells are a major source of several Wnt ligands. Visium spatial gene expression analysis revealed a distinct spatial distribution of Wnt ligands in the prostatic glands. We also showed that Wnt signaling components are highly expressed in the stromal compartment of primary and advanced human prostate cancer. Blocking stromal Wnt secretion attenuated prostate epithelial proliferation and regeneration but did not affect cell survival and lineage maintenance. DISCUSSION: Our study demonstrates a critical role of stroma-derived Wnt ligands in prostate development and homeostasis.


Assuntos
Próstata , Neoplasias da Próstata , Animais , Proliferação de Células , Humanos , Ligantes , Masculino , Camundongos , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células Estromais/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt
2.
Prostate ; 81(6): 309-317, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33503318

RESUMO

BACKGROUND: Castration resistant prostate cancer progression is associated with an acquired intratumoral androgen synthesis. Signaling pathways that can upregulate androgen production in prostate tumor microenvironment are not entirely known. In this study, we investigate the potential effect of a secreted signaling protein named semaphorin 3C (SEMA3C) on steroidogenic activities of prostatic stromal cells. METHODS: We treated human primary prostate stromal cells (PrSC) with 1uM recombinant SEMA3C protein and androgen precursor named dehydroepiandrosterone (DHEA) 1.7uM. Also, to test SEMA3C's effect on the conversion of DHEA to androgens, we exposed PrSCs to the conditioned media derived from LNCaP cells that were transduced with a lentiviral vector harboring full length SEMA3C gene or empty vector (CM-LNSEMA3C or CM-LNVector ). Then, liquid chromatography-mass spectrometry was performed on steroids isolated from PrSCs media. The messnger RNA expression of steroidogenic enzymes in PrSCs was quantified by quantitative polymerase chain reaction. RESULTS: Recombinant SEMA3C had no effect on steroidogenic activities in PrSCs. However, key steroidogenic enzymes expression and androgen synthesis were upregulated in PrSCs treated with CM-LNSEMA3C , compared to those treated with CM-LNVector . These results suggest that steroidogenic activities in PrSCs were upregulated in response to a signaling factor in CM-LNSEMA3C , other than SEMA3C. We hypothesized that SEMA3C overexpression in LNCaP cells affected androgen synthesis in PrSCs through sonic hedgehog (Shh) pathway activation in PrSCs. We verified this effect by blocking Shh signaling with smoothened antagonist. CONCLUSION: Based on known ability of Shh signaling pathway to activate steroidogenesis in stromal cells, we suggest that SEMA3C overexpression in LNCaP cells can upregulate Shh which in turn is able to stimulate steroidogenic activities in prostatic stromal cells.


Assuntos
Androgênios/biossíntese , Proteínas Hedgehog/metabolismo , Próstata/metabolismo , Semaforinas/metabolismo , Células Estromais/metabolismo , Desidroepiandrosterona/metabolismo , Humanos , Masculino , Comunicação Parácrina , Próstata/citologia , Semaforinas/genética , Regulação para Cima
3.
Int J Cancer ; 146(12): 3474-3484, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32144767

RESUMO

Modulation of prostate stromal cells (PrSCs) within tumor tissues is gaining attention for the treatment of solid tumors. Using our original in vitro coculture system, we previously reported that leucinostatin (LCS)-A, a peptide mycotoxin, inhibited prostate cancer DU-145 cell growth through reduction of insulin-like growth factor 1 (IGF-I) expression in PrSCs. To further obtain additional bioactive compounds from LCS-A, we designed and synthesized a series of LCS-A derivatives as compounds that target PrSCs. Among the synthesized LCS-A derivatives, LCS-7 reduced IGF-I expression in PrSCs with lower toxicity to PrSCs and mice than LCS-A. As LCS-A has been suggested to interact with mitochondrial adenosine triphosphate (ATP) synthase, a docking study was performed to elucidate the mechanism of reduced IGF-I expression in the PrSCs. As expected, LCS-A and LCS-7 directly interacted with mitochondrial ATP synthase, and like LCS-A and LCS-7, other mitochondrial ATP synthase inhibitors also reduced the expression of IGF-I by PrSCs. Furthermore, LCS-A and LCS-7 significantly decreased the growth of mouse xenograft tumors. Based on these data, we propose that the mitochondrial ATP synthases-IGF-I axis of PrSCs plays a critical role on cancer cell growth and inhibition could be a potential anticancer target for prostate cancer.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Células Estromais/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Simulação de Acoplamento Molecular , Próstata/citologia , Próstata/efeitos dos fármacos , Próstata/patologia , Neoplasias da Próstata/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Free Radic Res ; 51(2): 113-123, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28112004

RESUMO

The current study was designed to elucidate the cytoprotective effects and possible mechanisms of torulene and torularhodin on hydrogen peroxide (H2O2)-induced oxidative stress damage in human prostate stromal cells (WPMY-1). After treated with H2O2, a notable decrease was appeared in cell viability, yet the decrease was attenuated when cells were pretreated with torulene and torularhodin (0.5-10 µM) as evaluated by WST-1 assay. Pretreatment with these two carotenoids significantly attenuated H2O2-induced apoptosis in WPMY-1 cells through the inhibition of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) overproduction, as well as the activation of the activities in catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Finally, pretreatment of cells with carotenoids resulted in the regulation of the mRNA and protein expression of Bcl-2 and Bax in H2O2-exposed prostate stromal cells. The present results indicate that both torulene and torularhodin can protect human prostate stromal cells from oxidative stress damage via Bcl-2/Bax mediated apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Carotenoides/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Próstata/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Estromais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Western Blotting , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Oxidantes/farmacologia , Próstata/metabolismo , Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Células Estromais/patologia , Proteína X Associada a bcl-2/genética
5.
Oncotarget ; 7(31): 49425-49434, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27283903

RESUMO

Anterior Gradient 2 (AGR2) is a protein expressed in many solid tumor types including prostate, pancreatic, breast and lung. AGR2 functions as a protein disulfide isomerase in the endoplasmic reticulum. However, AGR2 is secreted by cancer cells that overexpress this molecule. Secretion of AGR2 was also found in salamander limb regeneration. Due to its ubiquity, tumor secretion of AGR2 must serve an important role in cancer, yet its molecular function is largely unknown. This study examined the effect of cancer-secreted AGR2 on normal cells. Prostate stromal cells were cultured, and tissue digestion media containing AGR2 prepared from prostate primary cancer 10-076 CP and adenocarcinoma LuCaP 70CR xenograft were added. The control were tissue digestion media containing no AGR2 prepared from benign prostate 10-076 NP and small cell carcinoma LuCaP 145.1 xenograft. In the presence of tumor-secreted AGR2, the stromal cells were found to undergo programmed cell death (PCD) characterized by formation of cellular blebs, cell shrinkage, and DNA fragmentation as seen when the stromal cells were UV irradiated or treated by a pro-apoptotic drug. PCD could be prevented with the addition of the monoclonal AGR2-neutralizing antibody P3A5. DNA microarray analysis of LuCaP 70CR media-treated vs. LuCaP 145.1 media-treated cells showed downregulation of the gene SAT1 as a major change in cells exposed to AGR2. RT-PCR analysis confirmed the array result. SAT1 encodes spermidine/spermine N1-acetyltransferase, which maintains intracellular polyamine levels. Abnormal polyamine metabolism as a result of altered SAT1 activity has an adverse effect on cells through the induction of PCD.


Assuntos
Apoptose , Neoplasias da Próstata/metabolismo , Proteínas/metabolismo , Acetiltransferases/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Fragmentação do DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Mucoproteínas , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas , Próstata/metabolismo , Neoplasias da Próstata/patologia , Células Estromais/metabolismo , Raios Ultravioleta
6.
J Steroid Biochem Mol Biol ; 138: 206-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23770322

RESUMO

The inflammatory tissue microenvironment can be an active promoter in preneoplastic cancer lesions. Altered steroid hormone metabolism as induced by the inflammatory microenvironment may contribute to epithelial cancer progression. Dehydroepiandrosterone sulfate (DHEAS) is the most abundant endogenous steroid hormone present in human serum and can be metabolized to DHEA, androgens and/or estrogens in peripheral tissues. We have previously reported that TGFß1-induced reactive prostate stromal cells increase DHEA metabolism to active androgens and alter prostate cancer cell gene expression. While much of the focus on mechanisms of prostate cancer and steroid metabolism is in the epithelial cancer cells, this study focuses on TGFß1-induced effects on DHEA metabolic pathways and enzymes in human prostate stromal cells. In DHEA-treated primary prostate stromal cells, TGFß1 produced time- and dose-dependent increases in metabolism of DHEA to androstenedione and testosterone. Also TGFß1-treated prostate stromal cells exhibited changes in the gene expression of enzymes involved in steroid metabolism including up-regulation of 3ß hydroxysteroid dehydrogenase (HSD), and down-regulation of 17ßHSD5, and 17ßHSD2. These studies suggest that reactive prostate stroma and the inflammatory microenvironment may contribute to altered steroid metabolism and increased intratumoral androgens.


Assuntos
Hidroxiesteroide Desidrogenases/metabolismo , Próstata/metabolismo , Células Estromais/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , 17-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Androstenodiona/metabolismo , Linhagem Celular Tumoral , Desidroepiandrosterona/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/efeitos dos fármacos , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA