Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(3): 526-544, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306980

RESUMO

Methods from artificial intelligence (AI) trained on large datasets of sequences and structures can now "write" proteins with new shapes and molecular functions de novo, without starting from proteins found in nature. In this Perspective, I will discuss the state of the field of de novo protein design at the juncture of physics-based modeling approaches and AI. New protein folds and higher-order assemblies can be designed with considerable experimental success rates, and difficult problems requiring tunable control over protein conformations and precise shape complementarity for molecular recognition are coming into reach. Emerging approaches incorporate engineering principles-tunability, controllability, and modularity-into the design process from the beginning. Exciting frontiers lie in deconstructing cellular functions with de novo proteins and, conversely, constructing synthetic cellular signaling from the ground up. As methods improve, many more challenges are unsolved.


Assuntos
Inteligência Artificial , Proteínas , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Engenharia de Proteínas , Aprendizado Profundo
2.
Cell ; 187(14): 3726-3740.e43, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861993

RESUMO

Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.


Assuntos
Diferenciação Celular , Fatores de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Animais , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Ligantes , Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases
3.
Cell ; 187(16): 4305-4317.e18, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38936360

RESUMO

Interleukin (IL)-23 and IL-17 are well-validated therapeutic targets in autoinflammatory diseases. Antibodies targeting IL-23 and IL-17 have shown clinical efficacy but are limited by high costs, safety risks, lack of sustained efficacy, and poor patient convenience as they require parenteral administration. Here, we present designed miniproteins inhibiting IL-23R and IL-17 with antibody-like, low picomolar affinities at a fraction of the molecular size. The minibinders potently block cell signaling in vitro and are extremely stable, enabling oral administration and low-cost manufacturing. The orally administered IL-23R minibinder shows efficacy better than a clinical anti-IL-23 antibody in mouse colitis and has a favorable pharmacokinetics (PK) and biodistribution profile in rats. This work demonstrates that orally administered de novo-designed minibinders can reach a therapeutic target past the gut epithelial barrier. With high potency, gut stability, and straightforward manufacturability, de novo-designed minibinders are a promising modality for oral biologics.


Assuntos
Colite , Interleucina-17 , Células Th17 , Animais , Administração Oral , Camundongos , Humanos , Ratos , Colite/tratamento farmacológico , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Células Th17/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Masculino , Interleucina-23/metabolismo , Interleucina-23/antagonistas & inibidores , Distribuição Tecidual , Feminino , Ratos Sprague-Dawley
4.
Cell ; 186(21): 4710-4727.e35, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774705

RESUMO

Polarized cells rely on a polarized cytoskeleton to function. Yet, how cortical polarity cues induce cytoskeleton polarization remains elusive. Here, we capitalized on recently established designed 2D protein arrays to ectopically engineer cortical polarity of virtually any protein of interest during mitosis in various cell types. This enables direct manipulation of polarity signaling and the identification of the cortical cues sufficient for cytoskeleton polarization. Using this assay, we dissected the logic of the Par complex pathway, a key regulator of cytoskeleton polarity during asymmetric cell division. We show that cortical clustering of any Par complex subunit is sufficient to trigger complex assembly and that the primary kinetic barrier to complex assembly is the relief of Par6 autoinhibition. Further, we found that inducing cortical Par complex polarity induces two hallmarks of asymmetric cell division in unpolarized mammalian cells: spindle orientation, occurring via Par3, and central spindle asymmetry, depending on aPKC activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Polaridade Celular , Técnicas Citológicas , Mitose , Animais , Citoesqueleto/metabolismo , Mamíferos/metabolismo , Microtúbulos/metabolismo , Proteína Quinase C/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
5.
Annu Rev Immunol ; 33: 139-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25493332

RESUMO

Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.


Assuntos
Citocinas/genética , Citocinas/metabolismo , Engenharia Genética , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Animais , Citocinas/química , Espaço Extracelular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Ligação Proteica , Transporte Proteico , Receptores de Citocinas/química , Transdução de Sinais
6.
Cell ; 183(5): 1367-1382.e17, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33160446

RESUMO

A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Nanopartículas/química , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Vacinação , Adolescente , Adulto , Idoso , Animais , COVID-19/virologia , Chlorocebus aethiops , Estudos de Coortes , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Macaca nemestrina , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Adulto Jovem
7.
Cell ; 176(6): 1420-1431.e17, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849373

RESUMO

Respiratory syncytial virus (RSV) is a worldwide public health concern for which no vaccine is available. Elucidation of the prefusion structure of the RSV F glycoprotein and its identification as the main target of neutralizing antibodies have provided new opportunities for development of an effective vaccine. Here, we describe the structure-based design of a self-assembling protein nanoparticle presenting a prefusion-stabilized variant of the F glycoprotein trimer (DS-Cav1) in a repetitive array on the nanoparticle exterior. The two-component nature of the nanoparticle scaffold enabled the production of highly ordered, monodisperse immunogens that display DS-Cav1 at controllable density. In mice and nonhuman primates, the full-valency nanoparticle immunogen displaying 20 DS-Cav1 trimers induced neutralizing antibody responses ∼10-fold higher than trimeric DS-Cav1. These results motivate continued development of this promising nanoparticle RSV vaccine candidate and establish computationally designed two-component nanoparticles as a robust and customizable platform for structure-based vaccine design.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vacinação/métodos , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Caveolina 1 , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/uso terapêutico , Cultura Primária de Células , Vírus Sinciciais Respiratórios/patogenicidade , Vacinas/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo , Proteínas Virais de Fusão/fisiologia
8.
Cell ; 177(7): 1933-1947.e25, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31160049

RESUMO

Heterotrimetic G proteins consist of four subfamilies (Gs, Gi/o, Gq/11, and G12/13) that mediate signaling via G-protein-coupled receptors (GPCRs), principally by receptors binding Gα C termini. G-protein-coupling profiles govern GPCR-induced cellular responses, yet receptor sequence selectivity determinants remain elusive. Here, we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique Gα subunit C termini. For each receptor, we probed chimeric Gα subunit activation via a transforming growth factor-α (TGF-α) shedding response in HEK293 cells lacking endogenous Gq/11 and G12/13 proteins, and complemented G-protein-coupling profiles through a NanoBiT-G-protein dissociation assay. Interrogation of the dataset identified sequence-based coupling specificity features, inside and outside the transmembrane domain, which we used to develop a coupling predictor that outperforms previous methods. We used the predictor to engineer designer GPCRs selectively coupled to G12. This dataset of fine-tuned signaling mechanisms for diverse GPCRs is a valuable resource for research in GPCR signaling.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Feminino , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Masculino , Células PC-3 , Receptores Acoplados a Proteínas G/genética
9.
Annu Rev Biochem ; 87: 105-129, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29401000

RESUMO

Proteins are increasingly used in basic and applied biomedical research. Many proteins, however, are only marginally stable and can be expressed in limited amounts, thus hampering research and applications. Research has revealed the thermodynamic, cellular, and evolutionary principles and mechanisms that underlie marginal stability. With this growing understanding, computational stability design methods have advanced over the past two decades starting from methods that selectively addressed only some aspects of marginal stability. Current methods are more general and, by combining phylogenetic analysis with atomistic design, have shown drastic improvements in solubility, thermal stability, and aggregation resistance while maintaining the protein's primary molecular activity. Stability design is opening the way to rational engineering of improved enzymes, therapeutics, and vaccines and to the application of protein design methodology to large proteins and molecular activities that have proven challenging in the past.


Assuntos
Proteínas/química , Proteínas/metabolismo , Animais , Evolução Molecular Direcionada/métodos , Desenho de Fármacos , Humanos , Modelos Moleculares , Filogenia , Agregados Proteicos , Engenharia de Proteínas/métodos , Dobramento de Proteína , Estabilidade Proteica , Proteínas/genética , Termodinâmica
10.
Annu Rev Biochem ; 87: 101-103, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925266

RESUMO

This article introduces the Protein Evolution and Design theme of the Annual Review of Biochemistry Volume 87.


Assuntos
Evolução Molecular Direcionada/métodos , Proteínas/genética , Proteínas/metabolismo , Animais , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Engenharia de Proteínas/métodos , Proteínas/química
11.
Mol Cell ; 84(12): 2353-2367.e5, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38834066

RESUMO

CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opt CRISPR-Cas systems for RNA-guided DNA transposition. CASTs integrate large DNA cargos into the attachment (att) site independently of homology-directed repair and thus hold promise for eukaryotic genome engineering. However, the functional diversity and complexity of CASTs hinder an understanding of their mechanisms. Here, we present the high-resolution cryoelectron microscopy (cryo-EM) structure of the reconstituted ∼1 MDa post-transposition complex of the type V-K CAST, together with different assembly intermediates and diverse TnsC filament lengths, thus enabling the recapitulation of the integration complex formation. The results of mutagenesis experiments probing the roles of specific residues and TnsB-binding sites show that transposition activity can be enhanced and suggest that the distance between the PAM and att sites is determined by the lengths of the TnsB C terminus and the TnsC filament. This singular model of RNA-guided transposition provides a foundation for repurposing the system for genome-editing applications.


Assuntos
Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Sítios de Ligação , Edição de Genes/métodos , Modelos Moleculares , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Conformação Proteica , Conformação de Ácido Nucleico
12.
Trends Biochem Sci ; 48(4): 375-390, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36564251

RESUMO

The fundamental biological importance and complexity of allosterically regulated proteins stem from their central role in signal transduction and cellular processes. Recently, machine-learning approaches have been developed and actively deployed to facilitate theoretical and experimental studies of protein dynamics and allosteric mechanisms. In this review, we survey recent developments in applications of machine-learning methods for studies of allosteric mechanisms, prediction of allosteric effects and allostery-related physicochemical properties, and allosteric protein engineering. We also review the applications of machine-learning strategies for characterization of allosteric mechanisms and drug design targeting SARS-CoV-2. Continuous development and task-specific adaptation of machine-learning methods for protein allosteric mechanisms will have an increasingly important role in bridging a wide spectrum of data-intensive experimental and theoretical technologies.


Assuntos
COVID-19 , Humanos , Sítio Alostérico , Regulação Alostérica , SARS-CoV-2/metabolismo , Proteínas/química , Aprendizado de Máquina
13.
Proc Natl Acad Sci U S A ; 121(13): e2314646121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502697

RESUMO

The design of protein-protein interfaces using physics-based design methods such as Rosetta requires substantial computational resources and manual refinement by expert structural biologists. Deep learning methods promise to simplify protein-protein interface design and enable its application to a wide variety of problems by researchers from various scientific disciplines. Here, we test the ability of a deep learning method for protein sequence design, ProteinMPNN, to design two-component tetrahedral protein nanomaterials and benchmark its performance against Rosetta. ProteinMPNN had a similar success rate to Rosetta, yielding 13 new experimentally confirmed assemblies, but required orders of magnitude less computation and no manual refinement. The interfaces designed by ProteinMPNN were substantially more polar than those designed by Rosetta, which facilitated in vitro assembly of the designed nanomaterials from independently purified components. Crystal structures of several of the assemblies confirmed the accuracy of the design method at high resolution. Our results showcase the potential of deep learning-based methods to unlock the widespread application of designed protein-protein interfaces and self-assembling protein nanomaterials in biotechnology.


Assuntos
Nanoestruturas , Proteínas , Modelos Moleculares , Proteínas/química , Sequência de Aminoácidos , Biotecnologia , Conformação Proteica
14.
Proc Natl Acad Sci U S A ; 121(11): e2313809121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437538

RESUMO

The potential of engineered enzymes in industrial applications is often limited by their expression levels, thermal stability, and catalytic diversity. De novo enzyme design faces challenges due to the complexity of enzymatic catalysis. An alternative approach involves expanding natural enzyme capabilities for new substrates and parameters. Here, we introduce CoSaNN (Conformation Sampling using Neural Network), an enzyme design strategy using deep learning for structure prediction and sequence optimization. CoSaNN controls enzyme conformations to expand chemical space beyond simple mutagenesis. It employs a context-dependent approach for generating enzyme designs, considering non-linear relationships in sequence and structure space. We also developed SolvIT, a graph NN predicting protein solubility in Escherichia coli, optimizing enzyme expression selection from larger design sets. Using this method, we engineered enzymes with superior expression levels, with 54% expressed in E. coli, and increased thermal stability, with over 30% having higher Tm than the template, with no high-throughput screening. Our research underscores AI's transformative role in protein design, capturing high-order interactions and preserving allosteric mechanisms in extensively modified enzymes, and notably enhancing expression success rates. This method's ease of use and efficiency streamlines enzyme design, opening broad avenues for biotechnological applications and broadening field accessibility.


Assuntos
Aprendizado Profundo , Escherichia coli/genética , Biotecnologia , Catálise , Ensaios de Triagem em Larga Escala
15.
Proc Natl Acad Sci U S A ; 121(43): e2407355121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39405345

RESUMO

Expanding the protein fold space beyond linear chains is of fundamental significance, yet remains largely unexplored. Herein, we report the creation of seven topological isoforms (i.e., linear, cyclic, knot, lasso, pseudorotaxane, and catenane) from a single protein fold precursor by rewiring the connectivity of secondary structure elements of the SpyTag-SpyCatcher complex and mutating the reactive residue on SpyTag to abolish the isopeptide bonding. These topological isoforms can be directly expressed in cells. Their topologies were confirmed by combined techniques of proteolytic digestion, fluorescence correlation spectroscopy (FCS), size-exclusion chromatography (SEC), and topological transformation. To study the effects of topology on their structures and properties, their biophysical properties were characterized by differential scanning calorimetry (DSC), heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (HSQC-NMR), and circular dichroism (CD) spectroscopy. Molecular dynamics (MD) simulations were further performed to reveal the atomic details of structural changes upon unfolding. Both experimental and simulation results suggest that they share a similar, well-folded hydrophobic core but exhibit distinct folding/unfolding dynamic behaviors. These results shed light onto the folding landscape of topological isoforms derived from the same protein fold. As a model system, this work improves our understanding of protein structure and dynamics beyond linear chains and suggests that protein folds are highly amenable to topological variation.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Isoformas de Proteínas , Isoformas de Proteínas/química , Dicroísmo Circular , Varredura Diferencial de Calorimetria , Estrutura Secundária de Proteína
16.
Proc Natl Acad Sci U S A ; 121(6): e2309457121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289949

RESUMO

Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in viscoelastic biomaterials exhibiting fluid-like properties under rest and low shear, but solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly in a manner similar to formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Animais , Hidrogéis/química , Biopolímeros , Mamíferos
17.
Proc Natl Acad Sci U S A ; 121(27): e2311807121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913893

RESUMO

Machine learning has been proposed as an alternative to theoretical modeling when dealing with complex problems in biological physics. However, in this perspective, we argue that a more successful approach is a proper combination of these two methodologies. We discuss how ideas coming from physical modeling neuronal processing led to early formulations of computational neural networks, e.g., Hopfield networks. We then show how modern learning approaches like Potts models, Boltzmann machines, and the transformer architecture are related to each other, specifically, through a shared energy representation. We summarize recent efforts to establish these connections and provide examples on how each of these formulations integrating physical modeling and machine learning have been successful in tackling recent problems in biomolecular structure, dynamics, function, evolution, and design. Instances include protein structure prediction; improvement in computational complexity and accuracy of molecular dynamics simulations; better inference of the effects of mutations in proteins leading to improved evolutionary modeling and finally how machine learning is revolutionizing protein engineering and design. Going beyond naturally existing protein sequences, a connection to protein design is discussed where synthetic sequences are able to fold to naturally occurring motifs driven by a model rooted in physical principles. We show that this model is "learnable" and propose its future use in the generation of unique sequences that can fold into a target structure.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Proteínas , Proteínas/química , Proteínas/metabolismo , Engenharia de Proteínas/métodos , Simulação de Dinâmica Molecular
18.
Proc Natl Acad Sci U S A ; 121(27): e2311500121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38916999

RESUMO

Proteins mediate their functions through chemical interactions; modeling these interactions, which are typically through sidechains, is an important need in protein design. However, constructing an all-atom generative model requires an appropriate scheme for managing the jointly continuous and discrete nature of proteins encoded in the structure and sequence. We describe an all-atom diffusion model of protein structure, Protpardelle, which represents all sidechain states at once as a "superposition" state; superpositions defining a protein are collapsed into individual residue types and conformations during sample generation. When combined with sequence design methods, our model is able to codesign all-atom protein structure and sequence. Generated proteins are of good quality under the typical quality, diversity, and novelty metrics, and sidechains reproduce the chemical features and behavior of natural proteins. Finally, we explore the potential of our model to conduct all-atom protein design and scaffold functional motifs in a backbone- and rotamer-free way.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas , Proteínas/química , Sequência de Aminoácidos
19.
Trends Biochem Sci ; 47(8): 638-640, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35466034

RESUMO

Proteins are fundamental molecules that mediate diverse biological processes, and protein design can shed light on the molecular mechanisms underlying their biological functions. Huang and colleagues have developed a sequence-independent statistical model for de novo protein design using neural networks (NNs) to learn the distribution of backbone structures with minimal side-chain information.


Assuntos
Proteínas , Conformação Proteica , Proteínas/química
20.
Immunity ; 46(6): 1073-1088.e6, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636956

RESUMO

The development of stabilized recombinant HIV envelope trimers that mimic the virion surface molecule has increased enthusiasm for a neutralizing antibody (nAb)-based HIV vaccine. However, there is limited experience with recombinant trimers as immunogens in nonhuman primates, which are typically used as a model for humans. Here, we tested multiple immunogens and immunization strategies head-to-head to determine their impact on the quantity, quality, and kinetics of autologous tier 2 nAb development. A bilateral, adjuvanted, subcutaneous immunization protocol induced reproducible tier 2 nAb responses after only two immunizations 8 weeks apart, and these were further enhanced by a third immunization with BG505 SOSIP trimer. We identified immunogens that minimized non-neutralizing V3 responses and demonstrated that continuous immunogen delivery could enhance nAb responses. nAb responses were strongly associated with germinal center reactions, as assessed by lymph node fine needle aspiration. This study provides a framework for preclinical and clinical vaccine studies targeting nAb elicitation.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/uso terapêutico , Centro Germinativo/imunologia , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/terapia , HIV-1/imunologia , Animais , Células Cultivadas , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Centro Germinativo/virologia , Infecções por HIV/imunologia , Humanos , Imunização , Injeções Subcutâneas , Primatas , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA