Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 2): 129910, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309395

RESUMO

Currently, protein-based hydrogels are widely applied in soft materials, tissue engineering and implantable scaffolds owing to their excellent biocompatibility, and degradability. However, most protein-based hydrogels are soft brittle. In this study, a ductile and mechanically enhanced bovine serum albumin (BSA) hydrogel is fabricated by soaking the a 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) induced BSA hydrogel in (NH4)2SO4 solution. An EDC/NHS coupling reaction induce protein coupling reactions that cause the BSA skeleton to resemble architectural load-bearing walls, protecting the integrity of the hydrogel and preventing collapse. The effects of the BSA and (NH4)2SO4 concentrations on the hydrogel mechanics are evaluated, and the possible strengthening mechanism is discussed. Besides, the highly kosmotropic ions greatly enhance the hydrophobic interaction within BSA gels and dehydration effect and their mechanical properties were significantly enhanced. The various mechanical properties of hydrogels can be regulated over a large window by soaking hydrogels into various ions. And most of them can be washed away, maintaining high biocompatibility of the protein. Importantly, the protein hydrogels prepared by this strategy could also be modified as strain sensors. In a word, this work demonstrates a new, universal method to provide multi-functional, biocompatible, strength enhanced and regulable mechanical pure protein hydrogel, combining the Hofmeister effect with -NH2/-COOH association groups.


Assuntos
Hidrogéis , Soroalbumina Bovina , Soroalbumina Bovina/química , Hidrogéis/química , Engenharia Tecidual , Resistência à Tração , Íons
2.
Biomaterials ; 306: 122494, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316090

RESUMO

Local anesthetics are effective in relieving pain, but their duration of action is short. Therefore, the development of injectable sustained release systems to prolong the effect of local anesthetics has been of interest. In such systems delivering conventional local anesthetics, it has been challenging to achieve long durations of effect, particularly without incurring tissue toxicity. To overcome these challenges, we created a platform comprising a protein hydrogel incorporating hydrophobic local anesthetic (bupivacaine) nanoparticles. The nanoparticles were prepared by anti-solvent precipitation stabilized with bovine serum albumin (BSA), followed by crosslinking with glutaraldehyde (GA). The resulting BSA hydrogels prolonged release of bupivacaine in vitro. When bupivacaine nanoparticles within crosslinked BSA were injected at the sciatic nerve in rats, a duration of nerve block of 39.9 h was obtained, compared to 5.5 h for the commercial bupivacaine liposome suspension EXPAREL®. Tissue reaction was benign. We further demonstrated that this system could control the release of the amphiphilic drug diphenhydramine and the hydrophobic paclitaxel.


Assuntos
Anestésicos Locais , Bloqueio Nervoso , Ratos , Animais , Anestesia Local/métodos , Hidrogéis , Bupivacaína , Bloqueio Nervoso/métodos
3.
Adv Healthc Mater ; 13(14): e2303824, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38303578

RESUMO

The limitations of protein-based hydrogels, including their insufficient mechanical properties and restricted biological functions, arise from the highly specific functions of proteins as natural building blocks. A potential solution to overcome these shortcomings is the development of protein-protein hydrogels, which integrate structural and functional proteins. In this study, a protein-protein hydrogel formed by crosslinking bovine serum albumin (BSA) and a genetically engineered intrinsically disordered collagen-like protein (CLP) through Ag─S bonding is introduced. The approach involves thiolating lysine residues of BSA and crosslinking CLP with Ag+ ions, utilizing thiolation of BSA and the free-cysteines of CLP. The resulting protein-protein hydrogels exhibit exceptional properties, including notable plasticity, inherent self-healing capabilities, and gel-sol transition in response to redox conditions. In comparison to standalone BSA hydrogels, these protein-protein hydrogels demonstrate enhanced cellular viability, and improved cellular migration. In vivo experiments provide conclusive evidence of accelerated wound healing, observed not only in murine models with streptozotocin (Step)-induced diabetes but also in zebrafish models subjected to UV-burn injuries. Detailed mechanistic insights, combined with assessments of proinflammatory cytokines and the expression of epidermal differentiation-related proteins, robustly validate the protein-protein hydrogel's effectiveness in promoting wound repair.


Assuntos
Hidrogéis , Soroalbumina Bovina , Cicatrização , Peixe-Zebra , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Soroalbumina Bovina/química , Camundongos , Compostos de Sulfidrila/química , Bovinos , Diabetes Mellitus Experimental , Queimaduras/terapia , Queimaduras/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química
4.
Acta Biomater ; 181: 176-187, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719158

RESUMO

Bacterial infections are among the most critical global health challenges that seriously threaten the security of human. To address this issue, a biocompatible engineered living hydrogel patch was developed by co-embedding engineered photothermal bacteria (EM), photosensitizer (porphyrin) and reactive oxygen species amplifier (laccase) in a protein hydrogel. Remarkably, the genetice engineered bacteria can express melanin granules in vivo and this allows them to exhibit photothermal response upon being exposed to NIR-II laser (1064 nm) irradiation. Besides, electrostatically adhered tetramethylpyridinium porphyrin (TMPyP) on the bacterial surface and encapsulated laccase (Lac) in protein gel can generate highly toxic singlet oxygen (1O2) and hydroxyl radical (·OH) in the presence of visible light and lignin, respectively. Interestingly, the engineered bacteria hydrogel patch (EMTL@Gel) was successfully applied in synergistic photothermal, photodynamic and chemodynamic therapy, in which it was able to efficiently treat bacterial infection in mouse wounds and enhance wound healing. This work demonstrates the concept of "fighting bacteria with bacteria" combining bacterial engineering and material engineering into an engineered living hydrogel path that can synergistically boost the therapeutic outcome. STATEMENT OF SIGNIFICANCE: Genetically engineered bacteria produce melanin granules in vivo, exhibiting remarkable photothermal properties. These bacteria, along with a photosensitizer (TMPyP) and a reactive oxygen species amplifier (laccase), are incorporated into a biocompatible protein hydrogel patch. Under visible light, the patch generates toxic singlet oxygen (1O2) and hydroxyl radical (·OH), demonstrates outstanding synergistic effects in photothermal, photodynamic, and chemodynamic therapy, effectively treating bacterial infections and promoting wound healing in mice.


Assuntos
Hidrogéis , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Infecções Bacterianas/tratamento farmacológico , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Lacase/química , Porfirinas/química , Porfirinas/farmacologia , Escherichia coli/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA