RESUMO
Aging is associated with cognitive decline and is the main risk factor for a myriad of conditions including neurodegeneration and stroke. Concomitant with aging is the progressive accumulation of misfolded proteins and loss of proteostasis. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and activation of the unfolded protein response (UPR). The UPR is mediated, in part, by the eukaryotic initiation factor 2α (eIF2α) kinase protein kinase R-like ER kinase (PERK). Phosphorylation of eIF2α reduces protein translation as an adaptive mechanism but this also opposes synaptic plasticity. PERK, and other eIF2α kinases, have been widely studied in neurons where they modulate both cognitive function and response to injury. The impact of astrocytic PERK signaling in cognitive processes was previously unknown. To examine this, we deleted PERK from astrocytes (AstroPERKKO ) and examined the impact on cognitive functions in middle-aged and old mice of both sexes. Additionally, we tested the outcome following experimental stroke using the transient middle cerebral artery occlusion (MCAO) model. Tests of short-term and long-term learning and memory as well as of cognitive flexibility in middle-aged and old mice revealed that astrocytic PERK does not regulate these processes. Following MCAO, AstroPERKKO had increased morbidity and mortality. Collectively, our data demonstrate that astrocytic PERK has limited impact on cognitive function and has a more prominent role in the response to neural injury.
Assuntos
Astrócitos , Aprendizagem , Acidente Vascular Cerebral , eIF-2 Quinase , Animais , Feminino , Masculino , Camundongos , Retículo Endoplasmático , Proteínas Quinases , eIF-2 Quinase/metabolismoRESUMO
Type III interferons (IFN-λ) are shown to be preferentially produced by epithelial cells, which provide front-line protection at barrier surfaces. Transmissible gastroenteritis virus (TGEV), belonging to the genus Alphacoronavirus of the family Coronaviridae, can cause severe intestinal injuries in porcine, resulting in enormous economic losses for the swine industry, worldwide. Here, we demonstrated that although IFN-λ1 had a higher basal expression, TGEV infection induced more intense IFN-λ3 production in vitro and in vivo than did IFN-λ1. We explored the underlying mechanism of IFN-λ induction by TGEV and found a distinct regulation mechanism of IFN-λ1 and IFN-λ3. The classical RIG-I-like receptor (RLR) pathway is involved in IFN-λ3 but not IFN-λ1 production. Except for the signaling pathways mediated by RIG-I and MDA5, TGEV nsp1 induces IFN-λ1 and IFN-λ3 by activating NF-κB via the unfolded protein responses (UPR) PERK-eIF2α pathway. Furthermore, functional domain analysis indicated that the induction of IFN-λ by the TGEV nsp1 protein was located at amino acids 85 to 102 and was dependent on the phosphorylation of eIF2α and the nuclear translocation of NF-κB. Moreover, the recombinant TGEV with the altered amino acid motif of nsp1 85-102 was constructed, and the nsp1 (85-102sg) mutant virus significantly reduced the production of IFN-λ, compared with the wild strain. Compared to the antiviral activities of IFN-λ1, the administration of IFN-λ3 showed greater antiviral activity against TGEV infections in IPEC-J2 cells. In summary, our data point to the significant role of IFN-λ in the host innate antiviral responses to coronavirus infections within mucosal organs and in the distinct mechanisms of IFN-λ1 and IFN-λ3 regulation. IMPORTANCE Coronaviruses cause infectious diseases in various mammals and birds and exhibit an epithelial cell tropism in enteric and respiratory tracts. It is critical to explore how coronavirus infections modulate IFN-λ, a key innate cytokine against mucosal viral infection. Our results uncovered the different processes of IFN-λ1 and IFN-λ3 production that are involved in the classical RLR pathway and determined that TGEV nsp1 induces IFN-λ1 and IFN-λ3 production by activating NF-κB via the PERK-eIF2α pathway in UPR. These studies highlight the unique regulation of antiviral defense in the intestine during TGEV infection. We also demonstrated that IFN-λ3 induced greater antiviral activity against TGEV replication than did IFN-λ1 in IPEC-J2 cells, which is helpful in finding a novel strategy for the treatment of coronavirus infections.
Assuntos
Gastroenterite Suína Transmissível , Interferon lambda , Vírus da Gastroenterite Transmissível , Animais , Antivirais , Interferon lambda/imunologia , Interferon lambda/farmacologia , NF-kappa B/imunologia , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Gastroenterite Suína Transmissível/imunologiaRESUMO
As a branch of the unfolded protein response, protein kinase R-like endoplasmic reticulum kinase (PERK) represses global translation in response to endoplasmic reticulum (ER) stress. This pathophysiological condition is associated with the tumor microenvironment in cancer. Previous findings in our lab have suggested that PERK selectively represses translation of some mRNAs, but this possibility awaits additional investigation. In this study, we show that a stem-cell marker protein, leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), is rapidly depleted in colon cancer cells during ER stress, an effect that depended on the PERK-mediated translational repression. Indeed, the PERK inhibition led to the accumulation of premature, underglycosylated forms of LGR5, which were produced only at low levels during proper PERK activation. Unlike the mature LGR5 form, which is constitutively degraded regardless of PERK activation, the underglycosylated LGR5 exhibited a prolonged half-life and accumulated inside the cells without being expressed on the cell surface. We also found that Erb-B2 receptor tyrosine kinase 3 (ERBB3) is subjected to a similarly-regulated depletion by PERK, whereas the epidermal growth factor receptor (EGFR), stress-inducible heat-shock protein family A (Hsp70) member 5 (HSPA5), and anterior gradient 2 protein-disulfide isomerase family member (AGR2) were relatively. insensitive to the PERK-mediated repression of translation. These results indicate that LGR5 and ERBB3 are targets for PERK-mediated translational repression during ER stress.
Assuntos
Estresse do Retículo Endoplasmático , Receptor ErbB-3/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Desoxiglucose/farmacologia , Regulação para Baixo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação , Meia-Vida , Proteínas de Choque Térmico/metabolismo , Humanos , Indóis/farmacologia , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Resposta a Proteínas não Dobradas , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genéticaRESUMO
Coronavirus replication is closely associated with the endoplasmic reticulum (ER), the primary cellular organelle for protein synthesis, folding, and modification. ER stress is a common consequence in coronavirus-infected cells. However, how the virus-induced ER stress influences coronavirus replication and pathogenesis remains controversial. Here, we demonstrated that infection with the alphacoronavirus transmissible gastroenteritis virus (TGEV) induced ER stress and triggered the unfolded protein response (UPR) in vitro and in vivo, and ER stress negatively regulated TGEV replication in vitro Although TGEV infection activated all three UPR pathways (activating transcription factor 6 [ATF6], inositol-requiring enzyme 1 [IRE1], and protein kinase R-like ER kinase [PERK]), the virus-triggered UPR suppressed TGEV replication in both swine testicular (ST) and IPEC-J2 cells primarily through activation of the PERK-eukaryotic initiation factor 2α (eIF2α) axis, as shown by functional studies with overexpression, small interfering RNA (siRNA), or specific chemical inhibitors. Moreover, we demonstrated that PERK-eIF2α axis-mediated inhibition of TGEV replication occurs through phosphorylated eIF2α-induced overall attenuation of protein translation. In addition to direct inhibition of viral production, the PERK-eIF2α pathway activated NF-κB and then facilitated type I IFN production, resulting in TGEV suppression. Taken together, our results suggest that the TGEV-triggered PERK-eIF2α pathway negatively regulates TGEV replication and represents a vital aspect of host innate responses to invading pathogens.IMPORTANCE The induction of ER stress is a common outcome in cells infected with coronaviruses. The UPR initiated by ER stress is actively involved in viral replication and modulates the host innate responses to the invading viruses, but these underlying mechanisms remain incompletely understood. We show here that infection with the alphacoronavirus TGEV elicited ER stress in vitro and in vivo, and the UPR PERK-eIF2α branch was predominantly responsible for the suppression of TGEV replication by ER stress. Furthermore, the PERK-eIF2α axis inhibited TGEV replication through direct inhibition of viral proteins due to global translation inhibition and type I IFN induction. These findings highlight a critical role of the UPR PERK-eIF2α pathway in modulating host innate immunity and coronavirus replication.
Assuntos
Interferon Tipo I/biossíntese , Biossíntese de Proteínas , Vírus da Gastroenterite Transmissível/fisiologia , Resposta a Proteínas não Dobradas , Replicação Viral/fisiologia , eIF-2 Quinase/metabolismo , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Interferon Tipo I/genética , Suínos , eIF-2 Quinase/genéticaRESUMO
Treatment with the antileukemic agent asparaginase can induce acute pancreatitis, but the pathophysiology remains obscure. In the liver of mice, eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2) is essential for mitigating metabolic stress caused by asparaginase. We determined the consequences of asparaginase treatment on the pancreata of wild-type (WT, GCN2-intact) and GCN2-deleted (ΔGcn2) mice. Mean pancreas weights in ΔGcn2 mice treated with asparaginase for 8 days were increased (P < 0.05) above all other groups. Histological examination revealed acinar cell swelling and altered staining of zymogen granules in ΔGcn2, but not WT, mice. Oil Red O staining and measurement of pancreas triglycerides excluded lipid accumulation as a contributor to acini appearance. Instead, transmission electron microscopy revealed dilatation of the endoplasmic reticulum (ER) and accumulation of autophagic vacuoles in the pancreas of ΔGcn2 mice treated with asparaginase. Consistent with the idea that loss of GCN2 in a pancreas exposed to asparaginase induced ER stress, phosphorylation of protein kinase R-like ER kinase (PERK) and its substrate eIF2 was increased in the pancreas of asparaginase-treated ΔGcn2 mice. In addition, mRNA expression of PERK target genes, activating transcription factors 4, 3, and 6 (Atf4, Atf3, and Atf6), fibroblast growth factor 21 (Fgf21), heat shock 70-kDa protein 5 (Hspa5), and spliced Xbp1 (sXbp1), as well as pancreas mass, was elevated in the pancreas of asparaginase-treated ΔGcn2 mice. Furthermore, genetic markers of oxidative stress [sirtuin (Sirt1)], inflammation [tumor necrosis factor-α (Tnfα)], and pancreatic injury [pancreatitis-associated protein (Pap)] were elevated in asparaginase-treated ΔGcn2, but not WT, mice. These data indicate that loss of GCN2 predisposes the exocrine pancreas to a maladaptive ER stress response and autophagy during asparaginase treatment and represent a genetic basis for development of asparaginase-associated pancreatitis.
Assuntos
Deleção de Genes , Pancreatite/genética , Proteínas Serina-Treonina Quinases/genética , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Asparaginase/toxicidade , Autofagia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/citologia , Pâncreas/metabolismo , Pancreatite/etiologia , Pancreatite/metabolismo , Proteínas Associadas a Pancreatite , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , eIF-2 Quinase/metabolismoRESUMO
Benzophenones are widely supplemented in personal care products, but little is known about its neurodevelopmental toxicity. The previous epidemiological study discovered a negative correlation between maternal exposure to a benzophenone metabolite 4-hydroxybenzophenone (4HBP) and child's neurodevelopment, yet the causal relationship and detailed mechanism remain to be defined. Here, it is reported that prenatal, but not postnatal, exposure to environmentally relevant level of 4HBP impairs hippocampus development and causes cognitive dysfunction in offspring mice. Transcriptomic analyses reveal that 4HBP induces the endoplasmic reticulum stress-induced apoptotic signaling and inflammatory response in hippocampal neural stem cells. Mechanistically, 4HBP exposure activates protein kinase R-like ER kinase (PERK) signaling, which induces CHOP, inhibits IκB translation, and transactivates p65, thereby promoting inflammation and apoptosis on multiple levels. Importantly, genetic or pharmacological inhibition of PERK pathway significantly attenuates 4HBP-induced NFκB signaling and neurodevelopmental abnormalities in mice and in a human brain organoid model. The study uncovers the neurodevelopmental toxicity of BP and cautions its exposure during pregnancy.
RESUMO
Endoplasmic reticulum (ER) stress is associated with numerous mammalian diseases, especially viral diseases. Porcine parvovirus (PPV) is the causative agent of reproductive failure in swine. Here, we observed that the PPV infection of porcine kidney 15 and porcine testis cells resulted in the activation of ER stress sensors mediated by protein kinase R-like ER kinase (PERK), but not inositol-requiring enzyme 1 and activating transcription factor 6 (ATF6). ER stress activation obviously blocked PPV replication. Depletion of proteins, such as PERK, eukaryotic initiation factor 2, and ATF4, by small interfering RNA significantly enhanced PPV replication. Moreover, the pro-apoptotic factor C/EBP homologous protein was identified a key factor in the inhibition of PPV replication. These data demonstrate that PPV infection activates ER stress through the PERK signaling pathway and that ER stress inhibits further PPV replication by promoting apoptosis.
Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Infecções por Parvoviridae/virologia , Parvovirus Suíno/fisiologia , Transdução de Sinais , Replicação Viral , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Técnicas de Silenciamento de Genes , Infecções por Parvoviridae/metabolismo , Infecções por Parvoviridae/patologia , Parvovirus Suíno/metabolismo , Suínos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/genéticaRESUMO
Endoplasmic reticulum stress (ERS) is involved in a variety of diseases. Recently, it was found that ERS induces not only apoptosis but also autophagy. Previous studies showed that inhibition of autophagy alleviates cell injury. The purpose of our study was to investigate the involvement of the R-like ER kinase (PERK) in ERS-induced autophagy in H9c2 cardiomyoblasts. To address this aim, therefore, H9c2 cells were treated with PERK agonist and inhibitor after establishment of rapamycin-induced ERS models in H9c2 cardiomyoblasts. Transmission electron microscopy and immunofluorescence staining were used to detect degrees of ERS-induced autophagy, apoptosis and myocardial fibrosis. Western blotting was employed to detect the levels of total and phosphorylated PERK, light chain 3 (LC3), P62, Caspase3, Bcl2 and Bax. Immunofluorescence staining was used to assess α-SMA density. TGF-ß induced H9c2 cardiomyoblasts time-dependently upregulated col I, col III, FN, and LC3 expressions, PERK phosphorylation and α-SMA density, and downregulated P62 level compared with control cells. Treatment with PERK agonist and inhibitor respectively increased and decreased LC3 expression, conversely in P62 level, which is consistent with effect of ERS agonists and inhibitors. And a PERK inhibitor upregulated the expressions of Caspase3 and Bax, and downregulated Bcl2 level, which developed H9c2 cardiomyoblasts. Moreover, siRNA-mediated knockdown of PERK reduced ERS mediated autophagy activity and increased cells apoptosis. On the other hand, elevated autophagy activity could downregulated PERK level. Our finding showed that PERK activity mediates upregulation of ERS-induced autophagy and regulation of cardiomyocyte apoptosis in H9c2 cardiomyoblasts.
Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Sirolimo/toxicidade , eIF-2 Quinase/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Butadienos/farmacologia , Linhagem Celular , Fibrose , Humanos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Nitrilas/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos , Transdução de Sinais , eIF-2 Quinase/antagonistas & inibidoresRESUMO
AIMS: Endoplasmic reticulum stress (ERS) is an evolutionarily conserved cell stress response. Recently, it was found that ERS induces not only apoptosis but also endoplasmic reticulophagy (ER-phagy). A previous study demonstrated that inhibition of ER-phagy alleviates cell injury. The purpose of this study was to investigate the involvement of the protein kinase R-like ER kinase (PERK)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in ERS-induced ER-phagy in H9c2 cardiomyoblasts. To address this aim, cells were treated with ERS inhibitors and a Nrf2 inhibitor before establishment of thapsigargin (TG)- or tunicamycin (TM)-induced ERS models in H9c2 cardiomyoblasts. MAIN METHODS: Transmission electron microscopy and immunofluorescence staining were used to detect ER-phagy. Western blotting was employed to detect the levels of calreticulin (CRT), total and phosphorylated PERK, nuclear Nrf2, activated transcription factor 4 (ATF4), light chain 3B (LC3B)-II and Beclin 1. Immunofluorescence staining was used to assess subcellular location of Nrf2. KEY FINDING: TG or TM induced H9c2 cell injury and ER-phagy and upregulated CRT expression, PERK phosphorylation, Nrf2 nuclear translocation, and expression of ATF4, Beclin 1, and LC3B-II compared with control cells. Treatment with ERS inhibitors decreased TG- or TM-induced ER-phagy, downregulated CRT expression, PERK phosphorylation, Nrf2 nuclear translocation and the expression of ATF4, Beclin 1 and LC3B-II. Moreover, a Nrf2 inhibitor downregulated the expression of ATF4, Beclin 1 and LC3B-II and alleviated TG- or TM-induced ER-phagy and H9c2 cell injury. SIGNIFICANCE: These findings suggest that the PERK/Nrf2 pathway mediates upregulation of ER-phagy, thereby inducing cell injury in H9c2 cardiomyoblasts.