Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(8): e2206098, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36507610

RESUMO

Design and development of low-cost and highly efficient non-precious metal electrocatalysts for hydrogen evolution reaction (HER) in an acidic medium are key issues to realize the commercialization of proton exchange membrane water electrolyzers. Ni is regarded as an ideal alternative to substitute Pt for HER based on the similar electronic structure and low price as well. However, low intrinsic activity and poor stability in acid restrict its practical applications. Herein, a new approach is reported to encapsulate Ni nanoparticles (NPs) into interlayer edges of N-doped Nb2 CTx MXene (Ni NPs@N-Nb2 CTx ) by an electrochemical process. The as-prepared Ni NPs@N-Nb2 CTx possesses Pt-like onset potentials and can reach 500 mA cm-2 at overpotentials of only 383 mV, which is much higher than that of N-Nb2 CTx supported Ni NPs synthesized by a wet-chemical method (w- Ni NPs/N-Nb2 CTx ). Furthermore, it shows high durability toward HER with a large current density of 300 mA cm-2 for 24 h because of the encapsulated structure against corrosion, oxidation as well as aggregation of Ni NPs in an acidic medium. Detailed structural characterization and density functional theory calculations reveal that the stronger interaction boosts the HER.

2.
Small ; 18(14): e2107745, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174962

RESUMO

An anode electrode concept of thin catalyst-coated liquid/gas diffusion layers (CCLGDLs), by integrating Ir catalysts with Ti thin tunable LGDLs with facile electroplating in proton exchange membrane electrolyzer cells (PEMECs), is proposed. The CCLGDL design with only 0.08 mgIr cm-2 can achieve comparative cell performances to the conventional commercial electrode design, saving ≈97% Ir catalyst and augmenting a catalyst utilization to ≈24 times. CCLGDLs with regulated patterns enable insight into how pattern morphology impacts reaction kinetics and catalyst utilization in PEMECs. A specially designed two-sided transparent reaction-visible cell assists the in situ visualization of the PEM/electrode reaction interface for the first time. Oxygen gas is observed accumulating at the reaction interface, limiting the active area and increasing the cell impedances. It is demonstrated that mass transport in PEMECs can be modified by tuning CCLGDL patterns, thus improving the catalyst activation and utilization. The CCLGDL concept promises a future electrode design strategy with a simplified fabrication process and enhanced catalyst utilization. Furthermore, the CCLGDL concept also shows great potential in being a powerful tool for in situ reaction interface research in PEMECs and other energy conversion devices with solid polymer electrolytes.

3.
Exploration (Beijing) ; 4(1): 20220112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38854490

RESUMO

Researchers have been seeking for the most technically-economical water electrolysis technology for entering the next-stage of industrial amplification for large-scale green hydrogen production. Various membrane-based electrolyzers have been developed to improve electric-efficiency, reduce the use of precious metals, enhance stability, and possibly realize direct seawater electrolysis. While electrode engineering is the key to approaching these goals by bridging the gap between catalysts design and electrolyzers development, nevertheless, as an emerging field, has not yet been systematically analyzed. Herein, this review is organized to comprehensively discuss the recent progresses of electrode engineering that have been made toward advanced membrane-based electrolyzers. For the commercialized or near-commercialized membrane electrolyzer technologies, the electrode material design principles are interpreted and the interface engineering that have been put forward to improve catalytic sites utilization and reduce precious metal loading is summarized. Given the pressing issues of electrolyzer cost reduction and efficiency improvement, the electrode structure engineering toward applying precious metal free electrocatalysts is highlighted and sufficient accessible sites within the thick catalyst layers with rational electrode architectures and effective ions/mass transport interfaces are enabled. In addition, this review also discusses the innovative ways as proposed to break the barriers of current membrane electrolyzers, including the adjustments of electrode reaction environment, and the feasible cell-voltage-breakdown strategies for durable direct seawater electrolysis. Hopefully, this review may provide insightful information of membrane-based electrode engineering and inspire the future development of advanced membrane electrolyzer technologies for cost-effective green hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA