RESUMO
Indoor microbial communities vary in composition and diversity depending on material type, moisture levels, and occupancy. In this study, we integrated bacterial cell counting, fungal biomass estimation, and fluorescence-assisted cell sorting (FACS) with amplicon sequencing of bacterial (16S rRNA) and fungal (ITS) communities to investigate the influence of wetting on medium density fiberboard (MDF) and gypsum wallboard. Surface samples were collected longitudinally from wetted materials maintained at high relative humidity (~95%). Bacterial and fungal growth patterns were strongly time-dependent and material-specific. Fungal growth phenotypes differed between materials: spores dominated MDF surfaces while fungi transitioned from spores to hyphae on gypsum. FACS confirmed that most of the bacterial cells were intact (viable) on both materials over the course of the study. Integrated cell count and biomass data (quantitative profiling) revealed that small changes in relative abundance often resulted from large changes in absolute abundance, while negative correlations in relative abundances were explained by rapid growth of only one group of bacteria or fungi. Comparisons of bacterial-bacterial and fungal-bacterial networks suggested a top-down control of fungi on bacterial growth, possibly via antibiotic production. In conclusion, quantitative profiling provides novel insights into microbial growth dynamics on building materials with potential implications for human health.
Assuntos
Ambiente Construído , Microbiologia Ambiental , Poluição do Ar em Ambientes Fechados , Bactérias , Materiais de Construção , Fungos , Humanos , Umidade , Interações Microbianas , Microbiota , Micobioma , Filogenia , RNA Ribossômico 16SRESUMO
Plant-associated microbes are critical for plant growth and survival under natural environmental conditions. To date, most plant microbiome studies involving high-throughput amplicon sequencing have focused on the relative abundance of microbial taxa. However, this technique does not assess the total microbial load and the abundance of individual microbes relative to the amount of host plant tissues. Here, we report the development of a host-associated quantitative abundance profiling (HA-QAP) method that can accurately examine total microbial load and colonization of individual root microbiome members relative to host plants by the copy-number ratio of microbial marker gene to plant genome. We validate the HA-QAP method using mock experiments, perturbation experiments, and metagenomic sequencing. The HA-QAP method eliminates the generation of spurious outputs in the classical method based on microbial relative abundance, and reveals the load of root microbiome to host plants. Using the HA-QAP method, we found that the copy-number ratios of microbial marker genes to plant genome range from 1.07 to 6.61 for bacterial 16S rRNA genes and from 0.40 to 2.26 for fungal internal transcribed spacers in the root microbiome samples from healthy rice and wheat. Furthermore, using HA-QAP we found that an increase in total microbial load represents a key feature of changes in root microbiome of rice plants exposed to drought stress and of wheat plants with root rot disease, which significantly influences patterns of differential taxa and species interaction networks. Given its accuracy and technical feasibility, HA-QAP would facilitate our understanding of genuine interactions between root microbiome and plants.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/fisiologia , Oryza/microbiologia , Raízes de Plantas/microbiologia , Triticum/microbiologia , Secas , Metagenoma , Microbiota/genética , Doenças das Plantas/microbiologia , Plasmídeos , RNA Ribossômico 16S/genética , Reprodutibilidade dos TestesRESUMO
Bacteria play a pivotal role in shaping ecosystems and contributing to elemental cycling and energy flow in the oceans. However, few studies have focused on bacteria at a trans-basin scale, and studies across the subtropical Northwest Pacific Ocean (NWPO), one of the largest biomes on Earth, have been especially lacking. Although the recently developed high-throughput quantitative sequencing methodology can simultaneously provide information on relative abundance, quantitative abundance, and taxonomic affiliations, it has not been thoroughly evaluated. We collected surface seawater samples for high-throughput, quantitative sequencing of 16S rRNA genes on a transect across the subtropical NWPO to elucidate the distribution of bacterial taxa, patterns of their community structure, and the factors that are potentially important regulators of that structure. We used the quantitative and relative abundances of bacterial taxa to test hypotheses related to their ecology. Total 16S rRNA gene copies ranged from 1.86 × 108 to 1.14 × 109 copies L-1. Bacterial communities were distributed in distinct geographical patterns with spatially adjacent stations clustered together. Spatial considerations may be more important determinants of bacterial community structures than measured environmental variables. The quantitative and relative abundances of bacterial communities exhibited similar distribution patterns and potentially important determinants at the whole-community level, but inner-community connections and correlations with variables differed at subgroup levels. This study advanced understanding of the community structure and distribution patterns of marine bacteria as well as some potentially important determinants thereof in a subtropical oligotrophic ocean system. Results highlighted the importance of considering both the quantitative and relative abundances of members of marine bacterial communities.