Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(21): 10089-10096, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37890167

RESUMO

An in-depth understanding of the structure-property relationships in semiconductor mixed-halide perovskites is critical for their potential applications in various light-absorbing and light-emitting optoelectronic devices. Here we show that during the crystal growth of mixed-halide CsPbBr1.2I1.8 nanocrystals (NCs), abundant Ruddlesden-Popper (RP) plane stacking faults are formed to release the lattice strain. These RP planes hinder the exchange of halide species across them, resulting in the presence of multiple nanodomains with discrete mixed-halide compositions inside a single CsPbBr1.2I1.8 NC. Photoluminescence peaks from these pre-segregated nanodomains, whose correlated intensity and wavelength variations signify the interactions of coupled quantum dots within a single CsPbBr1.2I1.8 NC, can be simultaneously resolved at cryogenic temperature. Our findings thus point to a fascinating scenario in which a semiconductor nanostructure can be further divided into multiple quantum-light sources, the interaction and manipulation of which will promote novel photophysics to facilitate their potential applications in quantum information technologies.

2.
Rep Prog Phys ; 86(9)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37489874

RESUMO

Strong-laser-field physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging from fundamental tests of quantum theory to quantum information processing. Despite the tremendous progress, until recently these directions have remained disconnected. This is because the majority of the interactions in the strong-field limit have been successfully described by semi-classical approximations treating the electromagnetic field classically, as there was no need to include the quantum properties of the field to explain the observations. The link between strong-laser-field physics, quantum optics, and quantum information science has been developed in the recent past. Studies based on fully quantized and conditioning approaches have shown that intense laser-matter interactions can be used for the generation of controllable entangled and non-classical light states. These achievements open the way for a vast number of investigations stemming from the symbiosis of strong-laser-field physics, quantum optics, and quantum information science. Here, after an introduction to the fundamentals of these research directions, we report on the recent progress in the fully quantized description of intense laser-matter interaction and the methods that have been developed for the generation of non-classical light states and entangled states. Also, we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science.

3.
Nano Lett ; 22(6): 2365-2373, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35285655

RESUMO

We investigate the quantum-optical properties of the light emitted by a nanoparticle-on-mirror cavity filled with a single quantum emitter. Inspired by recent experiments, we model a dark-field setup and explore the photon statistics of the scattered light under grazing laser illumination. Exploiting analytical solutions to Maxwell's equations, we quantize the nanophotonic cavity fields and describe the formation of plasmon-exciton polaritons (or plexcitons) in the system. This way, we reveal that the rich plasmonic spectrum of the nanocavity offers unexplored mechanisms for nonclassical light generation that are more efficient than the resonant interaction between the emitter natural transition and the brightest optical mode. Specifically, we find three different sample configurations in which strongly antibunched light is produced. Finally, we illustrate the power of our approach by showing that the introduction of a second emitter in the platform can enhance photon correlations further.

4.
Nano Lett ; 22(9): 3751-3760, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35467890

RESUMO

Attaining pure single-photon emission is key for many quantum technologies, from optical quantum computing to quantum key distribution and quantum imaging. The past 20 years have seen the development of several solid-state quantum emitters, but most of them require highly sophisticated techniques (e.g., ultrahigh vacuum growth methods and cryostats for low-temperature operation). The system complexity may be significantly reduced by employing quantum emitters capable of working at room temperature. Here, we present a systematic study across ∼170 photostable single CsPbX3 (X: Br and I) colloidal quantum dots (QDs) of different sizes and compositions, unveiling that increasing quantum confinement is an effective strategy for maximizing single-photon purity due to the suppressed biexciton quantum yield. Leveraging the latter, we achieve 98% single-photon purity (g(2)(0) as low as 2%) from a cavity-free, nonresonantly excited single 6.6 nm CsPbI3 QDs, showcasing the great potential of CsPbX3 QDs as room-temperature highly pure single-photon sources for quantum technologies.

5.
Small ; 18(19): e2200740, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35398978

RESUMO

Cesium lead halide perovskite nanocrystals (CLHP NCs) have a wide range of potential applications benefited from the properties of high photoluminescence quantum yield (PLQY), wide luminous gamut, and narrow half peak width. However, due to the ionic nature and sensitivity to moisture, oxygen, or heat, perovskite nanocrystals are too fragile to maintain their crystal structure and optical properties. This work proposes solutions to two key issues in the development of CLHP NCs. First, a productive droplet-based microreactor system is designed to accomplish the scale-up production of CLHP NCs, obtaining sub-gram high-purity nanocrystal powders in a single production process. Second, CLHP NCs which are stable in polar solvents, air environment, and high temperature by using 3-aminopropyl triethoxysilane (APTES) as basic ligand are obtained. Wrapped with Si-O-Si generated by APTES, the CLHP NCs exhibit a longer fluorescence lifetime and higher quantum yield. Especially, the PLQY of CsPbBr3 @APTES can be stable at higher than 90% for more than 10 days. The Si-O-Si protective layer can also suppress the anion exchange between CsPbBr3 and CsPbI3 , maintaining the monochromaticity of nanocrystal luminescence. Eventually, full-spectrum quantum light-emitting diode (QLED) beads with robust nanocrystals are fabricated. The gamut of CsPbX3 @APTES encompasses 140% of the NTSC color gamut standard.

6.
Nano Lett ; 20(12): 8733-8738, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33236638

RESUMO

Atom Probe Tomography (APT) is a microscopy technique allowing for the 3D reconstruction of the chemical composition of a nanoscale needle-shaped sample with a precision close to the atomic scale. The photonic atom probe (PAP) is an evolution of APT featuring in situ and operando detection of the photoluminescence signal. The optical signatures of the light-emitting centers can be correlated with the structural and chemical information obtained by the analysis of the evaporated ions. It becomes thus possible to discriminate and interpret the spectral signatures of different light emitters as close as 20 nm, well beyond the resolution limit set by the exciting laser wavelength. This technique opens up new perspectives for the study of the physics of low dimensional systems, defects and optoelectronic devices.

7.
Adv Mater ; : e2408424, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394979

RESUMO

Silicon-based color-centers (SiCCs) have recently emerged as quantum-light sources that can be combined with telecom-range Si Photonics platforms. Unfortunately, using conventional SiCC fabrication schemes, deterministic control over the vertical emitter position is impossible due to the stochastic nature of the required ion-implantation(s). To overcome this bottleneck toward high-yield integration, a radically innovative creation method is demonstrated for various SiCCs with excellent optical quality, solely relying on the epitaxial growth of Si and C-doped Si at atypically-low temperatures in an ultra-clean growth environment. These telecom emitters can be confined within sub-nm thick epilayers embedded within a highly crystalline Si matrix at arbitrary vertical positions. Tuning growth conditions and doping, different well-known SiCC types can be selectively created, including W-centers, T-centers, G-centers, and, especially, a so far unidentified derivative of the latter, introduced as G'-center. The zero-phonon emission from G'-centers at ≈1300 nm can be conveniently tuned by the C-concentration, leading to a systematic wavelength shift and linewidth narrowing toward low emitter densities, which makes both, the epitaxy-based fabrication and the G'-center particularly promising as integrable Si-based single-photon sources and spin-photon interfaces.

8.
Adv Mater ; 36(23): e2313589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477536

RESUMO

Quantum light sources are essential building blocks for many quantum technologies, enabling secure communication, powerful computing, and precise sensing and imaging. Recent advancements have witnessed a significant shift toward the utilization of "flat" optics with thickness at subwavelength scales for the development of quantum light sources. This approach offers notable advantages over conventional bulky counterparts, including compactness, scalability, and improved efficiency, along with added functionalities. This review focuses on the recent advances in leveraging flat optics to generate quantum light sources. Specifically, the generation of entangled photon pairs through spontaneous parametric down-conversion in nonlinear metasurfaces, and single photon emission from quantum emitters including quantum dots and color centers in 3D and 2D materials are explored. The review covers theoretical principles, fabrication techniques, and properties of these sources, with particular emphasis on the enhanced generation and engineering of quantum light sources using optical resonances supported by nanostructures. The diverse application range of these sources is discussed and the current challenges and perspectives in the field are highlighted.

9.
ACS Appl Mater Interfaces ; 15(1): 1619-1628, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574641

RESUMO

InP quantum dots (QDs) are the most competitive in terms of environmentally friendly QDs. However, the synthesis of InP QDs requires breakthroughs in low-cost and safe phosphorus precursors such as tri(dimethylamino)phosphine [(DMA)3P]. It is found that even if the oxygen is completely avoided, there are still oxidation state defects at the core/shell interface of InP QDs. Herein, the record-breaking (DMA)3P-based red InP QDs were synthesized with the assist of HF processing to eliminate the InPOx defect and improve the fluorescence efficiency. The maximum photoluminescence quantum yield was 97.7%, which is the highest of the red InP QDs synthesized by the aminophosphine. The external quantum efficiency and brightness of the QD light-emitting diode device are also improved accordingly from 0.6% and 1276 cd·m-2 to 3.5% and 2355 cd·m-2, respectively.

10.
J Phys Condens Matter ; 35(11)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36580683

RESUMO

We develop a fully quantum theoretical approach which describes the dynamics of Frenkel excitons and bi-excitons induced by few photon quantum light in a quantum well or wire (atomic chain) of finite lateral size. The excitation process is found to consist in the Rabi-like oscillations between the collective symmetric states characterized by discrete energy levels. At the same time, the enhanced excitation of high-lying free exciton states being in resonance with these 'dressed' polariton eigenstates is revealed. This found new effect is referred to as the formation of Rabi-shifted resonances and appears to be the most important and new feature established for the excitation of 1D and 2D nanostructures with final lateral size. The found new physics changes dramatically the conventional concepts of exciton formation and play an important role for the development of nanoelectronics and quantum information protocols involving manifold excitations in nanosystems.

11.
Adv Mater ; 35(26): e2210667, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36946467

RESUMO

Among the diverse platforms of quantum light sources, epitaxially grown semiconductor quantum dots (QDs) are one of the most attractive workhorses for realizing quantum photonic technologies owing to their outstanding brightness and scalability. However, the spatial and spectral randomness of most QDs severely hinders the construction of large-scale photonic platforms. In this work, a methodology is presented to deterministically integrate single QDs with tailor-made photonic structures. A nondestructive luminescence picking method termed as nanoscale-focus pinspot (NFP) is applied using helium-ion microscopy to reduce the luminous QD density while retaining the surrounding medium. A single QD emission is only extracted out of the high-density ensemble QDs. Then the tailor-made photonic structure of a circular Bragg reflector (CBR) is designed and deterministically integrated with the selected QD. Given that the microscopy can image with nanoscale resolution and apply NFP in situ, photonic devices can be deterministically fabricated on target QDs. The extraction efficiency of the NFP-selected QD emission is improved by 25 times after the CBR integration. Since the NFP method only controls the luminescence without destroying the medium, it is applicable to various photonic structures such as photonic waveguides or photonic crystal cavities regardless of materials.

13.
Front Chem ; 10: 1036197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324518

RESUMO

Quantum dot (QD) gas sensors are one of the most useful nanotechnologies applied to protect people from unnecessary harm. This work theoretically explores the mechanism in QD gas sensors in order to advance the prudent design of relevant products. The theoretical model employed in this research is similar to the process in plants' photosynthesis, referred to as charge separation of light harvesting. In this work, we investigate the details of energy transport in QD gas sensors carried by electrons from the circuit. We demonstrate theoretically how the effects of temperature and gas detection affect electron transport. To analyze thoroughly, the potential energy referred to as the Schotthy barrier perturbed by gasses is considered. Moreover, the energy transfer efficiency (ETE) of QD gas sensors for oxidizing or reducing gas is shown in the simulation. The results imply that the electron transport between QDs (raising the current and lessening the current) depends on a parameter corresponding with the Schotthy barrier. In regard to thermal energy portrayed by phonon baths, a higher temperature shortens the time duration of energy transport in QDs, hence raising energy transfer efficiency and energy current. Our model can be applied to further QD gas sensors' design and manufacture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA