RESUMO
The rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability for the biosynthesis of long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and all the catalytic enzymes including two fatty acyl desaturase 2 (Δ4 Fads2 and Δ6/Δ5 Fads2) and two elongases (Elovl4 and Elovl5) have been identified, providing a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in fish. Stimulatory protein 1 (Sp1) has been speculated to be a vital transcription factor in determining the promoter activity of Fads-like genes in fish, however its regulatory effects on gene expression and LC-PUFA biosynthesis have not been demonstrated. Bioinformatic analysis predicted potential Sp1 binding sites in the promoters of the rabbitfish Δ6/Δ5 fads2 and elovl5, but not in Δ4 fads2 promoter. Here we cloned full-length cDNA of the rabbitfish sp1 gene, which encoded a putative protein of 701 amino acids, and was expressed in all tissues studied with highest levels in gill and eyes. The dual luciferase reporter assay in HepG2 line cells demonstrated the importance of the Sp1 binding site for the promoter activities of both Δ6/Δ5 fads2 and elovl5. Moreover, the electrophoretic mobility shift assay confirmed the direct interaction of Sp1 with the two promoters. Insertion of the Sp1 binding site of Δ6/Δ5 fads2 promoter into the corresponding region of the Δ4 fads2 promoter significantly increased activity of the latter. In the Siganus canaliculatus hepatocyte line (SCHL) cells, mRNA levels of Δ6/Δ5 fads2 and elovl5 were positively correlated with the expression of sp1 when sp1 was overexpressed or knocked-down by RNAi or antagonist (mithramycin) treatment. Moreover, overexpression of sp1 also led to a higher conversion of 18:2n-6 to 18:3n-6, 18:2n-6 to 20:2n-6, and 18:3n-3 to 20:3n-3, which related to the functions of Δ6/Δ5 Fads2 and Elovl5, respectively. These results indicated that Sp1 is involved in the transcriptional regulation of LC-PUFA biosynthesis by directly targeting Δ6/Δ5 fads2 and elovl5 in rabbitfish, which is the first report of Sp1 involvement in the regulation of LC-PUFA biosynthesis in vertebrates.
Assuntos
Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos Ômega-3/biossíntese , Proteínas de Peixes/genética , Fator de Transcrição Sp1/metabolismo , Animais , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/metabolismo , Perciformes/genética , Perciformes/metabolismo , Fator de Transcrição Sp1/genética , Regulação para CimaRESUMO
The rabbitfish Siganus canaliculatus is the first marine teleost shown to be able to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors catalyzed by two fatty acyl desaturases (fad) including Δ4 Fad and Δ6/Δ5 Fad as well as two elongases (Elovl4 and Elovl5). Previously, hepatocyte nuclear factor 4α (Hnf4α) was demonstrated to be predominant in the transcriptional regulation of two fads. To clarify the regulatory mechanisms involved in rabbitfish lipogenesis, the present study focused on the regulatory role of Hnf4α to elovl5 expression and LC-PUFA biosynthesis. Bioinformatics analysis predicted two potential Hnf4α elements in elovl5 promoter, one binding site was confirmed to interact with Hnf4α by gel shift assays. Moreover, overexpression of hnf4α caused a remarkable increase both in elovl5 promoter activity and mRNA contents, while knock-down of hnf4α in S. canaliculatus hepatocyte line (SCHL) resulted in a significant decrease of elovl5 gene expression. Meanwhile, hnf4α overexpression enhanced LC-PUFA biosynthesis in SCHL cell, and intraperitoneal injection to rabbitfish juveniles with Hnf4α agonists (Alverine and Benfluorex) increased the expression of hnf4α, elvol5 and Δ4 fad, coupled with an increased proportion of total LC-PUFA in liver. The results demonstrated that Hnf4α is involved in LC-PUFA biosynthesis by up-regulating the transcription of the elovl5 gene in rabbitfish, which is the first report of Hnf4α as a transcription factor of the elovl5 gene in vertebrates.
Assuntos
Acetiltransferases/genética , Ácidos Graxos Insaturados/biossíntese , Peixes/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Região 5'-Flanqueadora/genética , Acetiltransferases/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Ácidos Graxos Dessaturases/metabolismo , Técnicas de Silenciamento de Genes , Fator 4 Nuclear de Hepatócito/agonistas , Injeções Intraperitoneais , Regiões Promotoras GenéticasRESUMO
Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is an important metabolic pathway in vertebrates, especially fish, considering they are the major source of n-3 LC-PUFA in the human diet. However, most fish have only limited capability for biosynthesis of LC-PUFA. The rabbitfish (Siganus canaliculatus) is able to synthesize LC-PUFA as it has all the key enzyme activities required including Δ6Δ5 Fads2, Δ4 Fads2, Elovl5, and Elovl4. We previously reported a direct interaction between the transcription factor Hnf4α and the promoter regions of Δ4 and Δ6Δ5 Fads2, which suggested that Hnf4α was involved in the transcriptional regulation of fads2 in rabbitfish. For functionally investigating it further, a full-length cDNA of 1736-bp-encoding rabbitfish Hnf4α with 454 amino acids was cloned, which was highly expressed in intestine, followed by liver and eyes. Similar to the expression characteristics of its target genes Δ4 and Δ6Δ5 fads2, levels of hnf4α mRNA in liver and eyes were higher in fish reared at low salinity than those reared in high salinity. After the rabbitfish primary hepatocytes were, respectively, incubated with alverine, benfluorex or BI6015, which were anticipated agonists or antagonist for Hnf4α, the mRNA level of Δ6Δ5 and Δ4 fads2 displayed a similar change tendency with that of hnf4α mRNA. Furthermore, when the mRNA level of hhf4α was knocked down using siRNA, the expression of Δ6Δ5 and Δ4 fads2 also decreased. Together, these data suggest that Hnf4α is involved in the transcriptional regulation of LC-PUFA biosynthesis, specifically, by targeting Δ4 and Δ6Δ5 fads2 in rabbitfish.
Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Proteínas de Peixes/genética , Peixes/genética , Peixes/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Animais , Células Cultivadas , Olho/metabolismo , Hepatócitos/metabolismo , Mucosa Intestinal/metabolismo , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Filogenia , RNA Mensageiro/metabolismo , SalinidadeRESUMO
Biosynthesis in vertebrates of long-chain polyunsaturated fatty acids (LC-PUFA) such as arachidonic (ARA; 20:4n-6), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids requires the catalysis by fatty acyl desaturases (Fads). A vertebrate Fad with Δ4 activity catalyzing the direct conversion of 22:5n-3 to DHA was discovered in the marine teleost rabbitfish Siganus canaliculatus. Recent studies in vertebrates have shown that miRNAs may participate in the regulation of lipid metabolism at post-transcription level. However, their roles in LC-PUFA biosynthesis were not known. In the present study, in silico analysis predicts that the rabbitfish Δ4 Fad may be a target of miR-17 and thus we cloned miR-17, which is located at the forepart of the miR-17-92 cluster. Dual luciferase reporter assays demonstrated that miR-17 targeted the 3'UTR of Δ4 Fad directly. Furthermore, the expression level of miR-17 displayed an inverse pattern with that of Δ4 Fad mRNA in gill, liver and eyes, and also the Δ4 Fad protein quantity in rabbitfish liver. Incubation of rabbitfish primary hepatocytes with linoleic acid (LA; 18:2n-6), α-linolenic acid (LNA; 18:3n-3), EPA or DHA showed differential effects on miR-17, Δ4 Fad and Δ6/Δ5 Fad expression. LNA promoted the expression of miR-17 and Δ6/Δ5 Fad, but suppressed the expression of Δ4 Fad. In contrast, LA and EPA decreased the expression of miR-17 and Δ6/Δ5 Fad, but had no effect on Δ4 Fad. However, all the above were down-regulated by DHA. These data indicate that miR-17 was involved in the regulation of LC-PUFA biosynthesis in rabbitfish liver by targeting Δ4 Fad.
Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Regulação da Expressão Gênica , Fígado/metabolismo , MicroRNAs/metabolismo , Perciformes/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Olho/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/farmacologia , Genes Reporter , Brânquias/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/citologia , Fígado/efeitos dos fármacos , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , Dados de Sequência Molecular , Perciformes/genética , Cultura Primária de Células , Transdução de SinaisRESUMO
Insulin is well known an important metabolic regulator in glucose and lipid metabolism. It has been proved to activate long-chain (≥ C20) polyunsaturated fatty acids (LC-PUFA) biosynthesis in mammals, but little is known about such a role in fish. To explore the effects and molecular mechanisms of insulin in fish LC-PUFA biosynthesis, we treated the rabbitfish S. canaliculatus hepatocyte line (SCHL) cells with 65 nM insulin for 12 h, and the results showed that the mRNA levels of genes encoding the key enzymes and transcription factor involved in rabbitfish LC-PUFA biosynthesis such as Δ6Δ5 fads2, elovl5 and srebp1, as well as those of PI3K pathway genes including pdk1, akt2 and mtor increased significantly. Moreover, SCHL cells treated with different PI3K/Akt pathway inhibitors (LY294002, Wortmannin, AKTi-1/2) alone or combined with insulin decreased the mRNA levels of PI3K/Akt/mTOR downstream signaling genes, including Δ6Δ5 fads2, Δ4 fads2, elovl5, elovl4 and srebp1. While PI3K/Akt agonists (740 Y-P, IGF-1, SC-79) had the opposite results. The results of fatty acid composition analysis of hepatocytes showed that insulin stimulation increased the Δ6Δ5 Fads2-dependent PUFA desaturation indexes, while Elovl5-dependent PUFA elongation indexes had upward trends, and consequently LC-PUFA contents increased. Taken together, these results indicated that insulin activated LC-PUFA biosynthesis probably through PI3K/Akt/mTOR/Srebp1 pathway in S. canaliculatus hepatocytes.
Assuntos
Proteínas de Peixes , Fosfatidilinositol 3-Quinases , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Post-transcriptional regulatory mechanisms play important roles in the regulation of long-chain (≥ C20) polyunsaturated fatty acid (LC-PUFA) biosynthesis. Here, we address a potentially important role of the miR-15/16 cluster in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. In rabbitfish, miR-15 and miR-16 were both highly responsive to fatty acids affecting LC-PUFA biosynthesis and displayed a similar expression pattern in a range of rabbitfish tissues. A common potential binding site for miR-15 and miR-16 was predicted in the 3'UTR of peroxisome proliferator-activated receptor gamma (pparγ), an inhibitor of LC-PUFA biosynthesis in rabbitfish, and luciferase reporter assays revealed that pparγ was a potential target of miR-15/16 cluster. In vitro individual or co-overexpression of miR-15 and miR-16 in rabbitfish hepatocyte line (SCHL) inhibited both mRNA and protein levels of Pparγ, and increased the mRNA levels of Δ6Δ5 fads2, Δ4 fads2, and elovl5, key enzymes of LC-PUFA biosynthesis. Inhibition of pparγ was more pronounced with co-overexpression of miR-15 and miR-16 than with individual overexpression in SCHL. Knockdown of miR-15/16 cluster gave opposite results, and increased mRNA levels of LC-PUFA biosynthesis enzymes were observed after knockdown of pparγ. Furthermore, miR-15/16 cluster overexpression significantly increased the contents of 22:6n-3, 20:4n-6 and total LC-PUFA in SCHL with higher 18:4n-3/18:3n-3 and 22:6n-3/22:5n-3 ratio. These suggested that miR-15 and miR-16 as a miRNA cluster together enhanced LC-PUFA biosynthesis by targeting pparγ in rabbitfish. This is the first report of the participation of miR-15/16 cluster in LC-PUFA biosynthesis in vertebrates.
Assuntos
Ácidos Graxos Insaturados/biossíntese , Peixes/genética , MicroRNAs/genética , PPAR gama/genética , Animais , Sítios de Ligação , Linhagem Celular , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , MicroRNAs/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismoRESUMO
Rabbitfish Siganus canaliculatus is the first marine teleost demonstrated to have the ability to synthesize long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and thus provides us a unique model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. MicroRNAs (miRNAs) were shown to play important roles in the regulation of LC-PUFA biosynthesis in rabbitfish at posttranscriptional level in our previous studies. Here, we focused the roles of miR-146a in such regulation. The expression of miR-146a displayed an inverse pattern with that of elongase 5 (Elovl5), a key enzyme catalyzing the elongation of C18 (18:4n3 and 18:3n6) and C20 (20:5n3 and 20:4n6) PUFA in the LC-PUFA biosynthesis, in vivo in liver of rabbitfish reared under different salinities, as well as in vitro in S. canaliculatus hepatocyte line (SCHL) cells incubated with different fatty acids. Bioinformatics analysis predicted that miR-146a may target the 3'UTR of elovl5 directly, which was confirmed by the dual luciferase reporter assays in HEK 293T cells. Overexpression of miR-146a significantly downregulated the expression of elovl5 in SCHL cells, while knockdown of miR-146a showed an opposite effect. Moreover, up-regulation of miR-146a in SCHL cells significantly suppressed the elongation indexes 20:3n6/18:3n6, 20:4n3/18:4n3 and 22:5n3/20:5n3 associated with Elovl5 catalyzing activity, and consequently reduced the contents of LC-PUFA. These results indicate that miR-146a is involved in the regulation of LC-PUFA biosynthesis through inhibiting the mRNA expression and activity of Elovl5 in rabbitfish, which was for the first time to focus on the role of miR-146a in LC-PUFA biosynthesis in vertebrates and will provide a new insight into the regulatory mechanisms of LC-PUFA biosynthesis in teleosts.
Assuntos
Acetiltransferases/genética , Peixes/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/biossíntese , Proteínas de Peixes/genética , Peixes/metabolismo , Regulação da Expressão Gênica , Células HEK293 , HumanosRESUMO
The rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and all genes encoding the key enzymes for LC-PUFA biosynthesis have been cloned and functionally characterized, which provides us a potential model to study the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. As the primary step to clarify such mechanisms, present research focused on promoter analysis of gene encoding ∆6/∆5 fatty acyl desaturase (Fad), a rate-limiting enzyme catalyzing the first step in the conversion of C18 PUFA to LC-PUFA. First, 2044â¯bp promoter sequence was cloned by genome walking, and the sequence from -456â¯bp to +51â¯bp was determined as core promoter by progressive deletion mutation. Moreover, binding sites of transcription factors (TF) such as CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), stimulatory protein 1 (Sp1), nuclear factor Y (NF-Y), activated protein 1 (AP1), sterol regulatory element (SRE), hepatocyte nuclear factor 4α (HNF4α) and peroxisome proliferator activated receptor γ (PPARγ) were identified in the core promoter by site-directed mutation and functional assays. Moreover, NF-1 and HNF4α were confirmed to interact with the core promoter region by gel shift assay and mass spectrometry. This is the first report of the promoter structure of a ∆6/∆5 Fad in a marine teleost, and a novel discovery of NF-1 and HNF4α binding to the ∆6/∆5 Fad promoter.
Assuntos
Ácidos Graxos Insaturados/genética , Peixes/genética , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação/genética , Fator de Ligação a CCAAT/genética , Clonagem Molecular/métodos , Proteínas de Peixes , Fator de Transcrição Sp1/genéticaRESUMO
Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability to biosynthesize C20-22 long-chain polyunsaturated fatty acid (LC-PUFA) from C18 PUFA precursors, which is generally absent or low in marine teleosts. Thus, understanding the molecular basis of LC-PUFA biosynthesis in rabbitfish will contribute to efforts aimed at optimizing LC-PUFA biosynthesis in teleosts, especially marine species. In the present study, the importance of the transcription factors liver X receptor (Lxr) and sterol regulatory element-binding protein 1 (Srebp1) in regulation of LC-PUFA biosynthesis in rabbitfish was investigated. First, full-length cDNA of Lxr and Srebp1 were cloned and characterized. The Lxr mRNA displayed a ubiquitous tissue expression pattern while Srebp1 was highly expressed in eyes, brain and intestine. In rabbitfish primary hepatocytes treated with Lxr agonist T0901317, the expression of Lxr and Srebp1 was activated, accompanied by elevated mRNA levels of Δ4 and Δ6/Δ5 fatty acyl desaturase (Fad), key enzymes of LC-PUFA biosynthesis, as well as peroxisome proliferator-activated receptor γ (PPARγ). In addition, Srebp1 displayed higher expression levels in liver of rabbitfish fed a vegetable oil diet or reared at 10 ppt salinity, which were conditions reported to increase the liver expression of Δ4 and Δ6/Δ5 Fad and LC-PUFA biosynthetic ability, than fish fed a fish oil diet or reared at 32 ppt, respectively. These results suggested that Lxr and Srebp1 are involved in regulation of LC-PUFA biosynthesis probably by promoting the expression of two Fad in rabbitfish liver, which, to our knowledge, is the first report in marine teleosts.