Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2221791120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165929

RESUMO

Using data from a wide range of natural communities including the human microbiome, plants, fish, mushrooms, rodents, beetles, and trees, we show that universally just a few percent of the species account for most of the biomass. This is in line with the classical observation that the vast bulk of biodiversity is very rare. Attempts to find traits allowing the tiny fraction of abundant species to escape rarity have remained unsuccessful. Here, we argue that this might be explained by the fact that hyper-dominance can emerge through stochastic processes. We demonstrate that in neutrally competing groups of species, rarity tends to become a trap if environmental fluctuations result in gains and losses proportional to abundances. This counter-intuitive phenomenon arises because absolute change tends to zero for very small abundances, causing rarity to become a "sticky state", a pseudoattractor that can be revealed numerically in classical ball-in-cup landscapes. As a result, the vast majority of species spend most of their time in rarity leaving space for just a few others to dominate the neutral community. However, fates remain stochastic. Provided that there is some response diversity, roles occasionally shift as stochastic events or natural enemies bring an abundant species down allowing a rare species to rise to dominance. Microbial time series spanning thousands of generations support this prediction. Our results suggest that near-neutrality within niches may allow numerous rare species to persist in the wings of the dominant ones. Stand-ins may serve as insurance when former key species collapse.


Assuntos
Ecossistema , Microbiota , Animais , Humanos , Biodiversidade , Biomassa , Árvores , Processos Estocásticos
2.
Proc Natl Acad Sci U S A ; 120(12): e2211531120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913570

RESUMO

Mountain ecosystems are exposed to multiple anthropogenic pressures that are reshaping the distribution of plant populations. Range dynamics of mountain plants exhibit large variability with species expanding, shifting, or shrinking their elevational range. Using a dataset of more than 1 million records of common and red-listed native and alien plants, we could reconstruct range dynamics of 1,479 species of the European Alps over the last 30 y. Red-listed species were not able to track climate warming at the leading edge of their distribution, and further experienced a strong erosion of rear margins, resulting in an overall rapid range contraction. Common natives also contracted their range, albeit less drastically, through faster upslope shift at the rear than at the leading edge. By contrast, aliens quickly expanded upslope by moving their leading edge at macroclimate change speed, while keeping their rear margins almost still. Most red-listed natives and the large majority of aliens were warm-adapted, but only aliens showed high competitive abilities to thrive under high-resource and disturbed environments. Rapid upward shifts of the rear edge of natives were probably driven by multiple environmental pressures including climate change as well as land-use change and intensification. The high environmental pressure that populations encounter in the lowlands might constrain the ability of expanding species to shift their range into more natural areas at higher elevations. As red-listed natives and aliens mostly co-occurred in the lowlands, where human pressures are at their highest, conservation should prioritize low-elevation areas of the European Alps.


Assuntos
Altitude , Ecossistema , Humanos , Plantas , Adaptação Fisiológica , Mudança Climática
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101981

RESUMO

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.


Assuntos
Conservação dos Recursos Naturais , Florestas , Árvores/classificação , Planeta Terra , Árvores/crescimento & desenvolvimento
4.
Glob Chang Biol ; 30(1): e16981, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888836

RESUMO

Indigenous Peoples are long-term custodians of their lands, but only recently are their contributions to conservation starting to be recognized in biodiversity policy and practice. Tropical forest loss and degradation are lower in Indigenous lands than unprotected areas, yet the role of Indigenous Peoples' Lands (IPL) in biodiversity conservation has not been properly assessed from regional to global scales. Using species distribution ranges of 11,872 tropical forest-dependent vertebrates to create area of habitat maps, we identified the overlap of these species ranges with IPL and then compared values inside and outside of IPL for species richness, extinction vulnerability, and range-size rarity. Of assessed vertebrates, at least 76.8% had range overlaps with IPL, on average overlapping ~25% of their ranges; at least 120 species were found only within IPL. Species richness within IPL was highest in South America, while IPL in Southeast Asia had highest extinction vulnerability, and IPL in Dominica and New Caledonia were important for range-size rarity. Most countries in the Americas had higher species richness within IPL than outside, whereas most countries in Asia had lower extinction vulnerability scores inside IPL and more countries in Africa and Asia had slightly higher range-size rarity in IPL. Our findings suggest that IPL provide critical support for tropical forest-dependent vertebrates, highlighting the need for greater inclusion of Indigenous Peoples in conservation target-setting and program implementation, and stronger upholding of Indigenous Peoples' rights in conservation policy.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Animais , Vertebrados , Biodiversidade , Povos Indígenas
5.
Oecologia ; 205(3-4): 691-707, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115695

RESUMO

The relationship between species diversity and spatial scale is a central topic in spatial community ecology. Latitudinal gradient is among the core mechanisms driving biodiversity distribution on most scales. Patterns of ß-diversity along latitudinal gradient have been well studied for aboveground terrestrial and marine communities, whereas soil organisms remain poorly investigated in this regard. The West Siberian Plain is a good model to address diversity scale-dependence since the latitudinal gradient does not overlap with other possible factors such as elevational or maritime. Here, we collected 111 samples following hierarchical sampling (sub-zones, ecosystem types, microhabitat and replicate samples) and performed multi-scale partitioning of ß-diversity of testate amoeba assemblages as a model of study. We found that among-ecosystem ß-diversity is a leading scale in testate amoeba assemblages variation. Rare species determine ß-diversity at all scale levels especially in the northern regions, where rare taxa almost exclusively accounted for the diversity at the ecosystem level. ß-Diversity is generally dominated by the turnover component at all scales in lower latitudes, whereas nestedness prevailed at among-ecosystem scale in higher latitudes. These findings indicate that microbial assemblages in northern latitudes are spatially homogeneous and constrained by historical drivers at larger scales, whereas in southern regions, it is dominated by the turnover component both at the microhabitat and ecosystem scales and therefore determined by recent vegetation and environmental heterogeneity. Overall, we have provided the evidence for the existence of negative latitudinal gradient for among-ecosystem ß-diversity but not for among-microhabitat and among-sample ß-diversity for terrestrial testate amoeba communities.


Assuntos
Amoeba , Biodiversidade , Ecossistema
6.
Biotropica ; 56(1): 36-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38515454

RESUMO

Determining how fully tropical forests regenerating on abandoned land recover characteristics of old-growth forests is increasingly important for understanding their role in conserving rare species and maintaining ecosystem services. Despite this, our understanding of forest structure and community composition recovery throughout succession is incomplete, as many tropical chronosequences do not extend beyond the first 50 years of succession. Here, we examined trajectories of forest recovery across eight 1-hectare plots in middle and later stages of forest succession (40-120 years) and five 1-hectare old-growth plots, in the Barro Colorado Nature Monument (BCNM), Panama. We first verified that forest age had a greater effect than edaphic or topographic variation on forest structure, diversity and composition and then corroborated results from smaller plots censused 20 years previously. Tree species diversity (but not species richness) and forest structure had fully recovered to old-growth levels by 40 and 90 years, respectively. However, rare species were missing, and old-growth specialists were in low abundance, in the mid- and late secondary forest plots, leading to incomplete recovery of species composition even by 120 years into succession. We also found evidence that dominance early in succession by a long-lived pioneer led to altered forest structure and delayed recovery of species diversity and composition well past a century after land abandonment. Our results illustrate the critical importance of old-growth and old secondary forests for biodiversity conservation, given that recovery of community composition may take several centuries, particularly when a long-lived pioneer dominates in early succession. Abstract in Spanish is available with online material.


Determinar en que medida los bosques tropicales que se regeneran en tierras abandonadas recuperan las características de los bosques primarios es cada vez más importante para comprender su papel en la conservación de especies raras y el mantenimiento de los servicios ecosistémicos. A pesar de ello, nuestro entendimiento sobre la recuperación de la estructura del bosque y la composición de la comunidad a lo largo de la sucesión es incompleta, ya que muchas cronosecuencias tropicales no van más allá de los primeros 50 años de sucesión. En este estudio, investigamos las trayectorias de recuperación del bosque en ocho parcelas de 1 hectárea en estadíos medios y tardíos de la sucesión forestal (40­120 años) y cinco parcelas de 1 hectárea de bosque primario, en el Monumento Natural Barro Colorado (MNBC), Panamá. En primer lugar, verificamos que la edad del bosque tenía un mayor efecto que la variación edáfica o topográfica en la estructura, diversidad y composición del bosque y luego corroboramos los resultados de parcelas más pequeñas estudiadas 20 años antes. La diversidad de especies arbóreas, pero no la riqueza de especies, y la estructura forestal se habían recuperado completamente hasta alcanzar los niveles de bosque primario a los 40 y 90 años, respectivamente. Sin embargo, los bosques secundarios carecían de especies raras y presentaban una escasa abundancia de especies especialistas del bosque antiguo, lo que condujo a una recuperación incompleta de la composición de especies, incluso a 120 años de sucesión. También encontramos pruebas de que el predominio de un pionero longevo en las primeras etapas de la sucesión provocó una alteración de la estructura forestal y retrasó la recuperación de la diversidad y composición de especies más allá de un siglo después el abandono de las tierras. Nuestros resultados ilustran la importancia crítica de los bosques primarios y secundarios más antiguos para la conservación de la biodiversidad, dado que la recuperación de la composición de la comunidad puede llevar varios siglos, especialmente cuando un pionero longevo domina en la sucesión temprana.

7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001610

RESUMO

Quantifying the abundance of species is essential to ecology, evolution, and conservation. The distribution of species abundances is fundamental to numerous longstanding questions in ecology, yet the empirical pattern at the global scale remains unresolved, with a few species' abundance well known but most poorly characterized. In large part because of heterogeneous data, few methods exist that can scale up to all species across the globe. Here, we integrate data from a suite of well-studied species with a global dataset of bird occurrences throughout the world-for 9,700 species (∼92% of all extant species)-and use missing data theory to estimate species-specific abundances with associated uncertainty. We find strong evidence that the distribution of species abundances is log left skewed: there are many rare species and comparatively few common species. By aggregating the species-level estimates, we find that there are ∼50 billion individual birds in the world at present. The global-scale abundance estimates that we provide will allow for a line of inquiry into the structure of abundance across biogeographic realms and feeding guilds as well as the consequences of life history (e.g., body size, range size) on population dynamics. Importantly, our method is repeatable and scalable: as data quantity and quality increase, our accuracy in tracking temporal changes in global biodiversity will increase. Moreover, we provide the methodological blueprint for quantifying species-specific abundance, along with uncertainty, for any organism in the world.


Assuntos
Distribuição Animal/fisiologia , Biodiversidade , Evolução Biológica , Aves/classificação , Filogenia , Animais , Aves/genética , Tamanho Corporal , Conservação dos Recursos Naturais/métodos , Ecossistema , Extinção Biológica , Dinâmica Populacional , Incerteza
8.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050023

RESUMO

Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders-abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions-for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.


Assuntos
Espécies Introduzidas , Filogeografia , Plantas/classificação , Ecossistema , Europa (Continente)
9.
J Fish Biol ; 104(3): 598-610, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940609

RESUMO

Black ruff (Centrolophus niger) is a rare and poorly studied species found in both the Atlantic and Pacific Oceans and also in the Mediterranean Sea. It is sporadically caught south of Iceland during the annual International Ecosystem Summer Survey of the Nordic Seas. In total, 43 specimens were caught from 2009 to 2021, of which 41 specimens were caught during 2017-2021. All specimens, except one, were caught using a pelagic trawl (cod-end mesh-size: 50 mm) close to the surface (trawl depth: 0-35 m) with in situ temperature ranging from 9 to 13°C. The area south of Iceland is characterized by having warmer temperatures than other areas around the island, which might be indicative of a northern limit for the distribution of black ruff. The fish were primarily in the range of 29-46 cm with a few larger individuals up to 71 cm. Fourteen fish, caught in 2017 and 2021, were dissected to gather biological information on this species. These fish were all juveniles with no obvious sign of gonad development. Correlations between total length, fork length, and standard length are presented. Otoliths were thin and delicate with a length of ~13-16 mm, and otolith size (length, width, and area) was correlated with fish size. Much of the stomach content was at an advanced stage of digestion, but some contents could be identified and consisted of invertebrates, primarily of the orders Amphipoda and Calanoida with some unidentified fish also present.


Assuntos
Ecossistema , Perciformes , Animais , Islândia , Membrana dos Otólitos , Níger , Peixes , Mar Mediterrâneo
10.
Ecol Lett ; 26(4): 504-515, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36740842

RESUMO

Current models of island biogeography treat endemic and non-endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non-endemic species and island ages. Endemics showed a link to climatically rare conditions that is consistent with island geological change through time. However, functional trait distinctiveness did not differ between endemics and non-endemics and remained constant with island age. Thus, there is no obvious link between trait distinctiveness and occupancy of rare climates, at least for the traits measured here, suggesting that treating endemic and non-endemic species as functionally equivalent in island biogeography is not fundamentally wrong.


Assuntos
Clima , Plantas , Fenótipo , Folhas de Planta , Espanha , Ilhas
11.
Proc Biol Sci ; 290(1993): 20222273, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36809807

RESUMO

Recent research has uncovered rapid compositional and structural reorganization of ecological assemblages, with these changes particularly evident in marine ecosystems. However, the extent to which these ongoing changes in taxonomic diversity are a proxy for change in functional diversity is not well understood. Here we focus on trends in rarity to ask how taxonomic rarity and functional rarity covary over time. Our analysis, drawing on 30 years of scientific trawl data, reveals that the direction of temporal shifts in taxonomic rarity in two Scottish marine ecosystems is consistent with a null model of change in assemblage size (i.e. change in numbers of species and/or individuals). In both cases, however, functional rarity increases, as assemblages become larger, rather than showing the expected decrease. These results underline the importance of measuring both taxonomic and functional dimensions of diversity when assessing and interpreting biodiversity change.


Assuntos
Biodiversidade , Ecossistema , Animais , Peixes
12.
Ann Bot ; 131(5): 737-750, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36273331

RESUMO

BACKGROUND AND AIMS: The hart's tongue fern (HTF) complex is a monophyletic group composed of five geographically segregated members with divergent abundance patterns across its broad geographic range. We postulated hierarchical systems of environmental controls in which climatic and land-use change drive abundance patterns at the global scale, while various ecological conditions function as finer scale determinants that further increase geographic disparities at regional to local scales. METHODS: After quantifying the abundance patterns of the HTF complex, we estimated their correlations with global climate and land-use dynamics. Regional determinants were assessed using boosted regression tree models with 18 potential ecological variables. Moreover, we investigated long-term population trends in the USA to understand the interplay of climate change and anthropogenic activities on a temporal scale. KEY RESULTS: Latitudinal climate shifts drove latitudinal abundance gradients, and regionally different levels of land-use change resulted in global geographic disparities in population abundance. At a regional scale, population isolation, which accounts for rescue effects, played an important role, particularly in Europe and East Asia where several hot spots occurred. Furthermore, the variables most strongly influencing abundance patterns greatly differed by region: precipitation seasonality in Europe; spatial heterogeneity of temperature and precipitation in East Asia; and magnitudes of past climate change, temperature seasonality and edaphic conditions in North America. In the USA, protected populations showed increasing trends compared with unprotected populations at the same latitude, highlighting the critical role of habitat protection in conservation measures. CONCLUSIONS: Geographic disparities in the abundance patterns of the HTF complex were determined by hierarchical systems of environmental controls, wherein climatic and land-use dynamics act globally but are modulated by various regional and local determinants operating at increasingly finer scales. We highlighted that fern conservation must be tailored to particular geographic contexts and environmental conditions by incorporating a better understanding of the dynamics acting at different spatiotemporal scales.


Assuntos
Gleiquênias , Ecossistema , Mudança Climática , Temperatura , Ásia Oriental
13.
Environ Monit Assess ; 195(4): 500, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36949353

RESUMO

The present study aimed to evaluate the floristic characteristics of the wild plants in Wadi Degla Protectorate, including taxonomic diversity, life and sex forms, dispersal types, economic potential, threats, and national and global floristic distributions. Field visits were conducted during January and April (2021), and the study area was divided to 185 locations to comprise all the Wadi. From each location, plant and seed specimens were collected. In the present study, 161 plants belonged to 128 genera, and 43 families were recorded. They inhabited three habitats (upstream, midstream, and downstream). Therophytes were the most represented life form. Bisexuals were the most represented sex form. Sarcochores were the most represented dispersal type, followed by desmochores. For small geographic range - national habitat - non-abundant plants were the most represented rarity form. For national scales, the Mediterranean and Sinai regions were the richest wild plants. For global scales, the Saharo-Sindian and Mediterranean regions were the most represented elements. Medicinal plants were the most represented good, while solid wastes were the most represented threat.


Assuntos
Monitoramento Ambiental , Plantas Medicinais , Humanos , Egito , Ecossistema
14.
Proc Biol Sci ; 289(1967): 20211694, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35042423

RESUMO

Despite evidence of a positive effect of functional diversity on ecosystem productivity, the importance of functionally distinct species (i.e. species that display an original combination of traits) is poorly understood. To investigate how distinct species affect ecosystem productivity, we used a forest-gap model to simulate realistic temperate forest successions along an environmental gradient and measured ecosystem productivity at the end of the successional trajectories. We performed 10 560 simulations with different sets and numbers of species, bearing either distinct or indistinct functional traits, and compared them to random assemblages, to mimic the consequences of a regional loss of species. Long-term ecosystem productivity dropped when distinct species were lost first from the regional pool of species, under the harshest environmental conditions. On the contrary, productivity was more dependent on ordinary species in milder environments. Our findings show that species functional distinctiveness, integrating multiple trait dimensions, can capture species-specific effects on ecosystem productivity. In a context of an environmentally changing world, they highlight the need to investigate the role of distinct species in sustaining ecosystem processes, particularly in extreme environmental conditions.


Assuntos
Ecossistema , Árvores , Biodiversidade , Ambientes Extremos , Florestas
15.
Ecol Appl ; 32(2): e2502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873777

RESUMO

Detecting occupied sites of rare species, and estimating the probability that all occupied sites are known within a given area, are desired outcomes for many ecological or conservation projects. Examples include managing all occupied sites of a threatened species or eradicating an emerging invader. Occupied sites may remain undetected because (1) sites where the species potentially occurs had not been searched, and (2) the species could have been overlooked in the searched sites. For rare species, available data are typically scant, making it difficult to predict sites where the species probably occurs or to estimate detection probability in the searched sites. Using the critically endangered Rose's mountain toadlet (Capensibufo rosei), known from only two localities, we outline an iterative process aimed at estimating the probability that any unknown occupied sites remain and maximizing the chance of finding them. This includes fitting a species distribution model to guide sampling effort, testing model accuracy and sampling efficacy using the occurrence of more common proxy species, and estimating detection probability using sites of known presence. The final estimate of the probability that all occupied sites were found incorporates the uncertainties of uneven distribution, relative area searched, and detection probability. Our results show that very few occupied sites of C. rosei are likely to remain undetected. We also show that the probability of an undetected occupied site remaining will always be high for large unsearched areas of potential occurrence, but can be low for smaller areas intended for targeted management interventions. Our approach is especially useful for assessing uncertainty in species occurrences, planning the required search effort needed to reduce probability of unknown occurrence to desired levels, and identifying priority areas for further searches or management interventions.


Assuntos
Espécies em Perigo de Extinção , Animais , Probabilidade
16.
Ecol Appl ; 32(8): e2708, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35810452

RESUMO

Cities are sometimes characterized as homogenous with species assemblages composed of abundant, generalist species having similar ecological functions. Under this assumption, rare species, or species observed infrequently, would have especially high conservation value in cities for their potential to increase functional diversity. Management to increase the number of rare species in cities could be an important conservation strategy in a rapidly urbanizing world. However, most studies of species rarity define rarity in relatively pristine environments where human management and disturbance is minimized. We know little about what species are rare, how many species are rare, and what management practices promote rare species in urban environments. Here, we identified which plants and species of birds and bees that control pests and pollinate crops are rare in urban gardens and assessed how social, biophysical factors, and cross-taxonomic comparisons influence rare species richness. We found overwhelming numbers of rare species, with more than 50% of plants observed classified as rare. Our results highlight the importance of women, older individuals, and gardeners who live closer to garden sites in increasing the number of rare plants within urban areas. Fewer rare plants were found in older gardens and gardens with more bare soil. There were more rare bird species in larger gardens and more rare bee species for which canopy cover was higher. We also found that in some cases, rarity begets rarity, with positive correlations found between the number of rare plants and bee species and between bee and bird species. Overall, our results suggest that urban gardens include a high number of species existing at low frequency and that social and biophysical factors promoting rare, planned biodiversity can cascade down to promote rare, associated biodiversity.


Assuntos
Biodiversidade , Jardins , Feminino , Abelhas , Animais , Humanos , Idoso , Cidades , Jardinagem , Plantas , Ecossistema , Urbanização
17.
Ecol Appl ; 32(3): e2534, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35044023

RESUMO

Continental- and regional-scale assessments of gaps in protected area networks typically use relatively coarse range maps for well documented species groups, creating uncertainty about the fate of unexamined biodiversity and providing insufficient guidance for land managers. By building habitat suitability models for a taxonomically diverse group of 2216 imperiled plants and animals, we revealed comprehensive and detailed protection opportunities in the conterminous United States. Summing protection-weighted range-size rarity (PWRSR, the product of the percent of modeled habitat outside of protected areas and the inverse of modeled habitat extent) uncovered novel patterns of biodiversity importance. Concentrations of unprotected imperiled species in places such as the northern Sierra Nevada, central and northern Arizona, the Rocky Mountains of Utah and Colorado, southeastern Texas, southwestern Arkansas, and Florida's Lake Wales Ridge have rarely if ever been featured in continental- and regional-scale analyses. Inclusion of diverse taxa (vertebrates, freshwater mussels, crayfishes, bumble bees, butterflies, skippers, and vascular plants) partially drove these new patterns. When analyses were restricted to groups typically included in previous studies (birds, mammals, and amphibians), up to 53% of imperiled species in other groups were left out. The finer resolution of modeled inputs (990 m) also resulted in a more geographically dispersed pattern. For example, 90% of the human population of the conterminous United States lives within 50 km of modeled habitat for one or more species with high PWRSR scores. Over one-half of the habitat for 818 species occurs within federally lands managed for biodiversity protection; an additional 360 species have over one-half of their modeled habitat on federal multiple use land. Freshwater animals occur in places with poorer landscape condition but with less exposure to climate change than other groups, suggesting that habitat restoration is an important conservation strategy for these species. The results provide fine-scale, taxonomically diverse inputs for local and regional priority-setting and show that although protection efforts are still widely needed on private lands, notable gains can be achieved by increasing protection status on selected federal lands.


Assuntos
Borboletas , Conservação dos Recursos Naturais , Animais , Biodiversidade , Aves , Ecossistema , Mamíferos
18.
Microb Ecol ; 84(1): 59-72, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34405249

RESUMO

The Arctic Ocean is facing rapid environmental changes with cascading effects on the entire Arctic marine ecosystem. However, we have a limited understanding of the consequences such changes have on bacteria and archaea (prokaryotes) at the base of the marine food web. In this study, we show how the prokaryotic rare biosphere behaves over a range of highly heterogeneous environmental conditions using 16S rRNA gene reads from amplicon and metagenome sequencing data from seawater samples collected during the Norwegian young sea ICE expedition between late winter and early summer. The prokaryotic rare biosphere was analyzed using different approaches: amplicon sequence variants and operational taxonomic units from the 16S rRNA gene amplicons and operational taxonomic units from the 16S rRNA genes of the metagenomes. We found that prokaryotic rare biosphere communities are specific to certain water masses, and that the majority of the rare taxa identified were always rare and disappeared in at least one sample under changing conditions, suggesting their high sensitivity to environmental heterogeneity. In addition, our methodological comparison revealed a good performance of 16S rRNA gene amplicon sequencing in describing rare biosphere patterns, while the metagenome-derived data were better to capture a significant diversity of so-far uncultivated rare taxa. Our analysis on the dynamics of the rare prokaryotic biosphere, by combining different methodological approaches, improves the description of the types of rarity predicted from Community Assembly theory in the Arctic Ocean.


Assuntos
Ecossistema , Água do Mar , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
19.
Oecologia ; 199(2): 453-470, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35689680

RESUMO

Among ectotherms, rare species are expected to have a narrower thermal niche breadth and reduced acclimation capacity and thus be more vulnerable to global warming than their common relatives. To assess these hypotheses, we experimentally quantified the thermal sensitivity of seven common, uncommon, and rare species of temperate marine annelids of the genus Ophryotrocha to assess their vulnerability to ocean warming. We measured the upper and lower limits of physiological thermal tolerance, survival, and reproductive performance of each species along a temperature gradient (18, 24, and 30 °C). We then combined this information to produce curves of each species' fundamental thermal niche by including trait plasticity. Each thermal curve was then expressed as a habitat suitability index (HSI) and projected for the Mediterranean Sea and temperate Atlantic Ocean under a present day (1970-2000), mid- (2050-2059) and late- (2090-2099) 21st Century scenario for two climate change scenarios (RCP2.6 and RCP8.5). Rare and uncommon species showed a reduced upper thermal tolerance compared to common species, and the niche breadth and acclimation capacity were comparable among groups. The simulations predicted an overall increase in the HSI for all species and identified potential hotspots of HSI decline for uncommon and rare species along the warm boundaries of their potential distribution, though they failed to project the higher sensitivity of these species into a greater vulnerability to ocean warming. In the discussion, we provide some caveats on the implications of our results for conservation efforts.


Assuntos
Mudança Climática , Aquecimento Global , Aclimatação , Ecossistema , Oceanos e Mares , Temperatura
20.
Entropy (Basel) ; 24(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35052126

RESUMO

Rising prices in energy, raw materials, and shortages of critical raw materials (CRMs) for renewable energies or electric vehicles are jeopardizing the transition to a low-carbon economy. Therefore, managing scarce resources must be a priority for governments. To that end, appropriate indicators that can identify the criticality of raw materials and products is key. Thermodynamic rarity (TR) is an exergy-based indicator that measures the scarcity of elements in the earth's crust and the energy intensity to extract and refine them. This paper uses TR to study 70 Mobile Phone (MP) Printed Circuit Boards (PCBs) samples. Results show that an average MP PCB has a TR of 88 MJ per unit, indicating their intensive use of valuable materials. Every year the embedded TR increases by 36,250 GWh worldwide -similar to the electricity consumed by Denmark in 2019- due to annual production of MP. Pd, Ta and Au embedded in MP PCBs worldwide between 2007 and 2021 contribute to 90% of the overall TR, which account for 75, 600 and 250 tones, respectively, and increasing by 11% annually. This, coupled with the short lifespan of MP, makes PCBs an important potential source of secondary resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA