Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Sci Technol ; 58(12): 5336-5346, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472090

RESUMO

The re-emission and subsurface migration of legacy mercury (Hg) are not well understood due to limited knowledge of the driving processes. To investigate these processes at a decommissioned chlor-alkali plant, we used mercury stable isotopes and chemical speciation analysis. The isotopic composition of volatilized Hg(0) was lighter compared to the bulk total Hg (THg) pool in salt-sludge and adjacent surface soil with mean ε202HgHg(0)-THg values of -3.29 and -2.35‰, respectively. Hg(0) exhibited dichotomous directions (E199HgHg(0)-THg = 0.17 and -0.16‰) of mass-independent fractionation (MIF) depending on the substrate from which it was emitted. We suggest that the positive MIF enrichment during Hg(0) re-emission from salt-sludge was overall controlled by the photoreduction of Hg(II) primarily ligated by Cl- and/or the evaporation of liquid Hg(0). In contrast, O-bonded Hg(II) species were more important in the adjacent surface soils. The migration of Hg from salt-sludge to subsurface soil associated with selective Hg(II) partitioning and speciation transformation resulted in deep soils depleted in heavy isotopes (δ202Hg = -2.5‰) and slightly enriched in odd isotopes (Δ199Hg = 0.1‰). When tracing sources using Hg isotopes, it is important to exercise caution, particularly when dealing with mobilized Hg, as this fraction represents only a small portion of the sources.


Assuntos
Mercúrio , Mercúrio/análise , Esgotos/análise , Isótopos de Mercúrio/análise , Isótopos/análise , Solo/química , Fracionamento Químico , Monitoramento Ambiental
2.
Environ Sci Technol ; 57(42): 15892-15903, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37788478

RESUMO

To understand the role of vegetation and soil in regulating atmospheric Hg0, exchange fluxes and isotope signatures of Hg were characterized using a dynamic flux bag/chamber at the atmosphere-foliage/soil interfaces at the Davos-Seehornwald forest, Switzerland. The foliage was a net Hg0 sink and took up preferentially the light Hg isotopes, consequently resulting in large shifts (-3.27‰) in δ202Hg values. The soil served mostly as net sources of atmospheric Hg0 with higher Hg0 emission from the moss-covered soils than from bare soils. The negative shift of δ202Hg and Δ199Hg values of the efflux air relative to ambient air and the Δ199Hg/Δ201Hg ratio among ambient air, efflux air, and soil pore gas highlight that Hg0 re-emission was strongly constrained by soil pore gas evasion together with microbial reduction. The isotopic mass balance model indicates 8.4 times higher Hg0 emission caused by pore gas evasion than surface soil photoreduction. Deposition of atmospheric Hg0 to soil was noticeably 3.2 times higher than that to foliage, reflecting the high significance of the soil to influence atmospheric Hg0 isotope signatures. This study improves our understanding of Hg atmosphere-foliage/soil exchange in subalpine coniferous forests, which is indispensable in the model assessment of forest Hg biogeochemical cycling.


Assuntos
Mercúrio , Mercúrio/análise , Solo/química , Suíça , Florestas , Atmosfera/química , Isótopos , Monitoramento Ambiental/métodos , Isótopos de Mercúrio/análise
3.
Environ Sci Technol ; 57(29): 10686-10695, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37437160

RESUMO

Significant knowledge gaps exist regarding the emission of elemental mercury (Hg0) from the tropical forest floor, which limit our understanding of the Hg mass budget in forest ecosystems. In this study, biogeochemical processes of Hg0 deposition to and evasion from soil in a Chinese tropical rainforest were investigated using Hg stable isotopic techniques. Our results showed a mean air-soil flux as deposition of -4.5 ± 2.1 ng m-2 h-1 in the dry season and as emission of +7.4 ± 1.2 ng m-2 h-1 in the rainy season. Hg re-emission, i.e., soil legacy Hg evasion, induces negative transitions of Δ199Hg and δ202Hg in the evaded Hg0 vapor, while direct atmospheric Hg0 deposition does not exhibit isotopic fractionation. Using an isotopic mass balance model, direct atmospheric Hg0 deposition to soil was estimated to be 48.6 ± 13.0 µg m-2 year-1. Soil Hg0 re-emission was estimated to be 69.5 ± 10.6 µg m-2 year-1, of which 63.0 ± 9.3 µg m-2 year-1 is from surface soil evasion and 6.5 ± 5.0 µg m-2 year-1 from soil pore gas diffusion. Combined with litterfall Hg deposition (∼34 µg m-2 year-1), we estimated a ∼12.6 µg m-2 year-1 net Hg0 sink in the tropical forest. The fast nutrient cycles in the tropical rainforests lead to a strong Hg0 re-emission and therefore a relatively weaker atmospheric Hg0 sink.


Assuntos
Mercúrio , Mercúrio/análise , Ecossistema , Monitoramento Ambiental , Florestas , Solo
4.
J Environ Sci (China) ; 103: 207-218, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743903

RESUMO

Accelerating the (NH4)2SO3 oxidation gives rise to the reclaiming of byproduct, while there are secondary environmental risks from reduction of the coexisted selenium species by sulfite. In this study, a bi-functional Co-SBA-15-SH, were synthesized through Co impregnation and sulfhydryl (-SH) decoration, which can simultaneously uptake Se and accelerate sulfite oxidation efficiently. Meanwhile, the adsorption kinetics and migration mechanism of Se species were revealed through characterization and density functional calculations, with maximum adsorption capacity of 223 mg/g. The inhibition of Se0 re-emission and poisonous effect of Se on sulfite oxidation was also investigated. Using the findings of this study, the ammonia desulfurization can be improved by enabling purification of the byproduct and lowering the toxicity of effluent by removing toxic pollutants.


Assuntos
Amônia , Selênio , Catálise , Oxirredução , Sulfitos
5.
Environ Res ; 168: 319-328, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384226

RESUMO

A series of batch experiments were conducted to obtain the optimal adsorption condition for removing aqueous Hg from actual lime-based wet flue gas desulfurization (WFGD) wastewater with sulfur-containing activated carbon (SAC). The experimental results showed that SAC1 had an average 0.32 µg mg-1 larger aqueous Hg adsorption capacity and 21% larger Hg removal than the CS2-treated SAC1 (i.e., SAC2) in all tested pH values, confirming that greater sulfur content associated with effective sulfur functional group (i.e., elemental S) caused the larger Hg adsorption capacity. Furthermore, as increasing pH from 4 to 7, the Hg adsorption capacity of SAC1 decreased by 22% (i.e., 0.27 µg mg-1). The equilibrium Hg adsorption capacity was well fitted with linear and Freundlich adsorption isotherms. Kinetic simulations showed that both pseudo-second order and Elovich equations could well describe the chemisorption behavior of Hg to SAC1. Thermodynamic parameter calculation confirmed that Hg adsorption by SAC1 was thermodynamically spontaneous and exothermic. Re-emission of gaseous Hg markedly decreased by 88% as SO32- addition increased from 0 to 0.01 mM. Notably, by the addition of SAC1, zero re-emission of gaseous Hg was achieved. These experimental results confirm that the capture of aqueous Hg2+ and the inhibition of gaseous Hg0 re-emission can be successfully and simultaneously achieved in actual WFGD wastewater via the addition of SAC.


Assuntos
Carvão Vegetal/química , Mercúrio , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Adsorção , Carbono , Enxofre
6.
J Environ Sci (China) ; 79: 67-73, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784465

RESUMO

Mercury (Hg) is a toxic and bio-accumulating heavy metal that is predominantly released via the combustion of coal. Due to its toxicity, the Environmental Protection Agency (EPA) has introduced Mercury and Air Toxics Standards (MATS) Rule regarding allowable Hg emissions. In order to reduce emissions, power plants have widely adopted activated carbon (AC) injection. AC injection has proven to be an effective method to reduce Hg emissions, but the re-emission of previously adsorbed Hg during unit operation, likely due to changing temperature or flue gas composition, could be problematic. This study specifically examined the effects of temperature and sulfur trioxide (SO3) concentration, by ramping temperature and SO3 concentration independently and simultaneously, on AC samples that are already exposed to flue gas and saturated in presence of Hg, sulfur dioxide (SO2) and nitric oxide (NO). Of these two suspected factors to cause re-emission, temperature had the greater impact and resulted in re-emission of both elemental and oxidized Hg with a greater fraction of oxidized Hg, which can be attributed to elemental Hg being more strongly bonded to the AC surface. Surprisingly, exposing the samples to increasing concentrations of SO3 had nearly no effect under the conditions examined in this study, possibly as a result of the samples being already saturated with sulfur prior to the SO3 ramp tests to simulate transient conditions in the plant.


Assuntos
Poluentes Atmosféricos/química , Carbono/química , Mercúrio/química , Centrais Elétricas , Óxidos de Enxofre/química , Carvão Mineral , Dióxido de Nitrogênio/química , Dióxido de Enxofre/química , Temperatura
7.
Chemosphere ; 364: 143241, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39236919

RESUMO

Polychlorinated biphenyl compounds (PCBs) are industrial chemicals whose production was discontinued in the early nineties in most countries. Sill, PCBs are detectable in pristine and remote locations. Occurrence in regions such as Southern Oceans and Antarctica are influenced by the global, and regional, cycling. Here, we studied the surface and deep ocean distribution of indicator- and dioxin-like PCB congeners in the Southern Indian Ocean (SIO), and the coast of Antarctica (COA) during the tenth Indian Southern Ocean Expedition (SOE-10), December 2017-February 2018. ∑21PCBs in SIO surface waters ranged from 3.8 to 167.1 pg L-1 (average ± standard deviation: 35.7 ± 48.4 pg L-1), and in COA from 1.0 to 41.8 pg L-1 (13.8 ± 12.7 pg L-1), respectively. A noticeable gradient was observed, with higher PCBs levels in northern latitudes than southern latitudes in the SIO, and higher levels in the eastern longitudes compared to western longitudes in the COA. Results suggest the influence of secondary sources, or re-emission, of PCBs in the Southern Oceans and Antarctica. Both regions showed notable PCB levels in surface and deep waters (up to 1000 m) due to ongoing surface sources and remineralization processes in deeper waters. Multimedia modeling with the global model (BETR-Global) suggests the SIO act as a net sink for PCBs in the ocean.


Assuntos
Monitoramento Ambiental , Bifenilos Policlorados , Água do Mar , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Regiões Antárticas , Poluentes Químicos da Água/análise , Oceano Índico , Água do Mar/química
8.
J Phys Condens Matter ; 36(2)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37793396

RESUMO

The energy distributions of scattered and re-emitted low-energy positrons from a W(100) surface were measured as a function of incident positron energy from 0 to 25 eV. Given that tungsten has a negative work function of about -3 eV for positrons, one can envisage three scenarios of very low-energy positron scattering from such a surface. First, a positron approaching the sample surface with energy say 1 eV above the vacuum level will see a potential barrier of about 2 eV height and will be reflected back to the vacuum. Second, when the energy of incident positrons increases up to the top of the surface potential barrier (positron work function), they start entering the solid and, therefore, the reflectivity of positrons from the surface reduces. Positrons entering the solid are thermalised within few picoseconds and have a chance to escape back to the vacuum with kinetic energy about 3 eV above the vacuum level undergoing so-calledre-emission. Third, coherent scattering of low-energy positrons may occur on the crystal surface, i.e. positron diffraction. All the three scenarios of low-energy positrons scattering are studied here experimentally. Measured spectra are very sensitive to the surface conditions of the sample: they change dramatically after surface oxidation or thin film deposition.

9.
Sci Total Environ ; 904: 167532, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797758

RESUMO

Soils constitute the major reservoir of mercury (Hg) in terrestrial ecosystems, whose stability may be threatened by wildfires. This research attempts to look at the effect of prescribed fire on the presence of Hg in a shrubland ecosystem from NE Portugal, delving into its relationship with soil aggregate size and the molecular composition of soil organic matter (SOM). During the prescribed fire, on average 347 mg Hg ha-1 were lost from the burnt aboveground biomass of shrubs and 263 mg Hg ha-1 from the combustion of the soil organic horizon. Overall, Hg concentration and pools in the mineral soil did not show significant changes due to burning, which highlights their role as long-term Hg reservoirs. The higher Hg concentrations found in smaller aggregates (<0.2 mm) compared to coarser ones (0.5-2 mm) are favored by the higher degree of organic matter decomposition (low C/N ratio), rather than by greater total organic C contents. The Hg-enriched finest fraction of soil (<0.2 mm) could be more prone to be mobilized by erosion, whose potential arrival to water bodies increases the environmental concern for the Hg present in fire-affected soils. The SOM quality (molecular composition) and the main organic families, analyzed by Fourier-transform infrared spectroscopy in combination with multivariate statistical analysis, significantly conditioned the retention/emission of Hg in the uppermost soil layers. Thus, before the fire, Hg was strongly linked to lipid and protein fractions, while Hg appeared to be linked to aromatic-like compounds in fire-affected SOM.

10.
New Microbes New Infect ; 45: 100949, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35018221

RESUMO

The COVID-19 disease caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2) has posed as a major health concern for people all across the globe. Along with the increasing confirmed patients being readmitted with complaints for fever, cough, cold, the effective monitoring of 'relapse' of the SARS-CoV-2 virus in the previously discharged patients have become the next area of focus. However, availability of limited data on reactivation of SARS-CoV-2 makes the disease prognosis as well as the effective control of re-infection an immense challenge. Prompted by these challenges, we assessed the possibility of re-infection in discharged patients and the risk of the transmission, proficiency of RT-PCR results and approximate period required for the quarantine, and the real challenges for the development of vaccine. In the present review, the published literature on all the possible cases of re-infection from February to July were reported, thereby selected 142 studies from a hub of overall 669 studies after full text screening. The incomplete virus clearance, poor sensitivity of the present diagnostic testing, emergence of mutant strains, insufficient mucus collection from the throat swab etc., are some of the possible causes of re-infection. The new protocols for management of COVID-19 discharged patients should be revised in the guidelines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA