Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850492

RESUMO

The topic addressed in this article is part of the current concerns of modernizing power systems by promoting and implementing the concept of smart grid(s). The concepts of smart metering, a smart home, and an electric car are developing simultaneously with the idea of a smart city by developing high-performance electrical equipment and systems, telecommunications technologies, and computing and infrastructure based on artificial intelligence algorithms. The article presents contributions regarding the modeling of consumer classification and load profiling in electrical power networks and the efficiency of clustering techniques in their profiling as well as the simulation of the load of medium-voltage/low-voltage network distribution transformers to electricity meters.

2.
Sensors (Basel) ; 23(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896678

RESUMO

This study designs a spectrum data collection device and system based on the Internet of Things technology, aiming to solve the tedious process of chlorophyll collection and provide a more convenient and accurate method for predicting chlorophyll content. The device has the advantages of integrated design, portability, ease of operation, low power consumption, low cost, and low maintenance requirements, making it suitable for outdoor spectrum data collection and analysis in fields such as agriculture, environment, and geology. The core processor of the device uses the ESP8266-12F microcontroller to collect spectrum data by communicating with the spectrum sensor. The spectrum sensor used is the AS7341 model, but its limited number of spectral acquisition channels and low resolution may limit the exploration and analysis of spectral data. To verify the performance of the device and system, this experiment collected spectral data of Hami melon leaf samples and combined it with a chlorophyll meter for related measurements and analysis. In the experiment, twelve regression algorithms were tested, including linear regression, decision tree, and support vector regression. The results showed that in the original spectral data, the ETR method had the best prediction effect at a wavelength of 515 nm. In the training set, RMSEc was 0.3429, and Rc2 was 0.9905. In the prediction set, RMSEp was 1.5670, and Rp2 was 0.8035. In addition, eight preprocessing methods were used to denoise the original data, but the improvement in prediction accuracy was not significant. To further improve the accuracy of data analysis, principal component analysis and isolation forest algorithm were used to detect and remove outliers in the spectral data. After removing the outliers, the RFR model performed best in predicting all wavelength combinations of denoised spectral data using PBOR. In the training set, RMSEc was 0.8721, and Rc2 was 0.9429. In the prediction set, RMSEp was 1.1810, and Rp2 was 0.8683.


Assuntos
Clorofila , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados , Clorofila/análise , Folhas de Planta/química , Agricultura
3.
Entropy (Basel) ; 24(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35455196

RESUMO

Pristine and trustworthy data are required for efficient computer modelling for medical decision-making, yet data in medical care is frequently missing. As a result, missing values may occur not just in training data but also in testing data that might contain a single undiagnosed episode or a participant. This study evaluates different imputation and regression procedures identified based on regressor performance and computational expense to fix the issues of missing values in both training and testing datasets. In the context of healthcare, several procedures are introduced for dealing with missing values. However, there is still a discussion concerning which imputation strategies are better in specific cases. This research proposes an ensemble imputation model that is educated to use a combination of simple mean imputation, k-nearest neighbour imputation, and iterative imputation methods, and then leverages them in a manner where the ideal imputation strategy is opted among them based on attribute correlations on missing value features. We introduce a unique Ensemble Strategy for Missing Value to analyse healthcare data with considerable missing values to identify unbiased and accurate prediction statistical modelling. The performance metrics have been generated using the eXtreme gradient boosting regressor, random forest regressor, and support vector regressor. The current study uses real-world healthcare data to conduct experiments and simulations of data with varying feature-wise missing frequencies indicating that the proposed technique surpasses standard missing value imputation approaches as well as the approach of dropping records holding missing values in terms of accuracy.

4.
Neuroimage ; 199: 351-365, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173905

RESUMO

Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques - embedded feature selection and bootstrap aggregation (bagging) - to model performance was also quantified. Five machine learning regression methods - Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size.


Assuntos
Encéfalo/diagnóstico por imagem , Aprendizado de Máquina , Modelos Teóricos , Neuroimagem/métodos , Humanos , Neuroimagem/normas , Reprodutibilidade dos Testes
5.
Sensors (Basel) ; 19(15)2019 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-31382683

RESUMO

Soil organic matter (SOM) is a major indicator of soil fertility and nutrients. In this study, a soil organic matter measuring method based on an artificial olfactory system (AOS) was designed. An array composed of 10 identical gas sensors controlled at different temperatures was used to collect soil gases. From the response curve of each sensor, four features were extracted (maximum value, mean differential coefficient value, response area value, and the transient value at the 20th second). Then, soil organic matter regression prediction models were built based on back-propagation neural network (BPNN), support vector regression (SVR), and partial least squares regression (PLSR). The prediction performance of each model was evaluated using the coefficient of determination (R2), root-mean-square error (RMSE), and the ratio of performance to deviation (RPD). It was found that the R2 values between prediction (from BPNN, SVR, and PLSR) and observation were 0.880, 0.895, and 0.808. RMSEs were 14.916, 14.094, and 18.890, and RPDs were 2.837, 3.003, and 2.240, respectively. SVR had higher prediction ability than BPNN and PLSR and can be used to accurately predict organic matter contents. Thus, our findings offer brand new methods for predicting SOM.


Assuntos
Nariz Eletrônico , Solo/química , Calibragem , Gases/química , Análise dos Mínimos Quadrados , Redes Neurais de Computação , Máquina de Vetores de Suporte/normas , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/normas
6.
Biomimetics (Basel) ; 9(10)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39451792

RESUMO

This study explores the fabrication and characterisation of 3D-printed polylactic acid (PLA) scaffolds reinforced with calcium hydroxyapatite (cHAP) for bone tissue engineering applications. By varying the cHAP content, we aimed to enhance PLA scaffolds' mechanical and thermal properties, making them suitable for load-bearing biomedical applications. The results indicate that increasing cHAP content improves the tensile and compressive strength of the scaffolds, although it also increases brittleness. Notably, incorporating cHAP at 7.5% and 10% significantly enhances thermal stability and mechanical performance, with properties comparable to or exceeding those of human cancellous bone. Furthermore, this study integrates machine learning techniques to predict the mechanical properties of these composites, employing algorithms such as XGBoost and AdaBoost. The models demonstrated high predictive accuracy, with R2 scores of 0.9173 and 0.8772 for compressive and tensile strength, respectively. These findings highlight the potential of using data-driven approaches to optimise material properties autonomously, offering significant implications for developing custom-tailored scaffolds in bone tissue engineering and regenerative medicine. The study underscores the promise of PLA/cHAP composites as viable candidates for advanced biomedical applications, particularly in creating patient-specific implants with improved mechanical and thermal characteristics.

7.
Artif Intell Rev ; : 1-36, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36820441

RESUMO

Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011-2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model.

8.
Eur J Remote Sens ; 56(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38239331

RESUMO

The spaceborne imaging spectroscopy mission PRecursore IperSpettrale della Missione Applicativa (PRISMA), launched on 22 March 2019 by the Italian Space Agency, opens new opportunities in many scientific domains, including precision farming and sustainable agriculture. This new Earth Observation (EO) data stream requires new-generation approaches for the estimation of important biophysical crop variables (BVs). In this framework, this study evaluated a hybrid approach, combining the radiative transfer model PROSAIL-PRO and several machine learning (ML) regression algorithms, for the retrieval of canopy chlorophyll content (CCC) and canopy nitrogen content (CNC) from synthetic PRISMA data. PRISMA-like data were simulated from two images acquired by the airborne sensor HyPlant, during a campaign performed in Grosseto (Italy) in 2018. CCC and CNC estimations, assessed from the best performing ML algorithms, were used to define two relations with plant nitrogen uptake (PNU). CNC proved to be slightly more correlated to PNU than CCC (R2 = 0.82 and R2 = 0.80, respectively). The CNC-PNU model was then applied to actual PRISMA images acquired in 2020. The results showed that the estimated PNU values are within the expected ranges, and the temporal trends are compatible with plant phenology stages.

9.
Comput Biol Med ; 166: 107558, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37806054

RESUMO

The presented study estimates cuff-less blood pressure (BP) from photoplethysmography (PPG) signals using multiple machine-learning (ML) models and the semi-classical signal analysis (SCSA) technique. The study proposes a novel signal reconstruction algorithm, which optimizes the semi-classical constant of the SCSA approach and eliminates the trade-off between complexity and accuracy during signal reconstruction. It predicts BP values using regression algorithms by processing reconstructed PPG signals' spectral features, extracting clinically relevant PPG and its second derivative's (SDPPG) morphological features. The developed method was assessed using a virtual in-silico dataset with more than 4000 subjects and the Multi-Parameter Intelligent Monitoring in Intensive Care Units (MIMIC-II) dataset. Results showed that the method attained a mean absolute error (MAE) of 5.37 and 2.96 mmHg for systolic and diastolic BP, respectively, using the CatBoost algorithm. This approach met the Association for the Advancement of Medical Instrumentation's standard and achieved Grade A for all BP categories in the British Hypertension Society protocol. The proposed framework performs well even when applied to a combined clinically relevant database originating from MIMIC-III and the Queensland dataset. The proposed method's performance is further evaluated in a non-clinical setting with noisy and deformed PPG signals to validate the efficacy of the SCSA method. The noise stress tests further showed that the algorithm maintained its key feature detection, signal reconstruction capability, and estimation accuracy up to a 10 dB SNR ratio. The proposed cuff-less BP estimation technique has the potential to perform well in mobile healthcare devices due to its straightforward implementation approach.

10.
Waste Manag ; 153: 20-30, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041267

RESUMO

Rapid determination of moisture content plays an important role in guiding the recycling, treatment and disposal of solid waste, as the moisture content of solid waste directly affects the leachate generation, microbial activities, pollutants leaching and energy consumption during thermal treatment. Traditional moisture content measurement methods are time-consuming, cumbersome and destructive to samples. Therefore, a rapid and nondestructive method for determining the moisture content of solid waste has become a key technology. In this work, an attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and multiple machine learning methods was developed to predict the moisture content of multi-source solid waste (textile, paper, leather and wood waste). A combined model was proposed for moisture content regression prediction, and the applicability of 20 combinations of five spectral preprocessing methods and four regression algorithms were discussed to further improve the modeling accuracy. Furthermore, the prediction result based on the water-band spectra was compared with the prediction result based on the full-band spectra. The result showed that the combination model can efficiently predict the moisture content of multi-source solid waste, and the R2 values of the validation and test datasets and the root mean square error for the moisture prediction reached 0.9604, 0.9660, and 3.80, respectively after the hyperparameter optimization. The excellent performance indicated that the proposed combined models can rapidly and accurately measure the moisture content of solid waste, which is significant for the existing waste characterization scheme, and for the further real-time monitoring and management of solid waste treatment and disposal process.


Assuntos
Poluentes Ambientais , Resíduos Sólidos , Aprendizado de Máquina , Resíduos Sólidos/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química
11.
Front Genet ; 12: 728913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630522

RESUMO

Inattention is one of the most significant clinical symptoms for evaluating attention deficit hyperactivity disorder (ADHD). Previous inattention estimations were performed using clinical scales. Recently, predictive models for inattention have been established for brain-behavior estimation using neuroimaging features. However, the performance of inattention estimation could be improved for conventional brain-behavior models with additional feature selection, machine learning algorithms, and validation procedures. This paper aimed to propose a unified framework for inattention estimation from resting state fMRI to improve the classical brain-behavior models. Phase synchrony was derived as raw features, which were selected with minimum-redundancy maximum-relevancy (mRMR) method. Six machine learning algorithms were applied as regression methods. 100 runs of 10-fold cross-validations were performed on the ADHD-200 datasets. The relevance vector machines (RVMs) based on the mRMR features for the brain-behavior models significantly improve the performance of inattention estimation. The mRMR-RVM models could achieve a total accuracy of 0.53. Furthermore, predictive patterns for inattention were discovered by the mRMR technique. We found that the bilateral subcortical-cerebellum networks exhibited the most predictive phase synchrony patterns for inattention. Together, an optimized strategy named mRMR-RVM for brain-behavior models was found for inattention estimation. The predictive patterns might help better understand the phase synchrony mechanisms for inattention.

12.
Hand Clin ; 37(3): 391-399, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34253312

RESUMO

Brain-machine interfaces (BMI) are being developed to restore upper limb function for persons with spinal cord injury or other motor degenerative conditions. BMI and implantable sensors for myoelectric prostheses directly extract information from the central or peripheral nervous system to provide users with high fidelity control of their prosthetic device. Control algorithms have been highly transferable between the 2 technologies but also face common issues. In this review of the current state of the art in each field, the authors point out similarities and differences between the 2 technologies that may guide the implementation of common solutions to these challenges.


Assuntos
Membros Artificiais , Interfaces Cérebro-Computador , Traumatismos da Medula Espinal , Algoritmos , Mãos , Humanos , Extremidade Superior
13.
Front Neurorobot ; 12: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30093857

RESUMO

Due to the limitations of myoelectric control (such as dependence on muscular fatigue and on electrodes shift, difficulty in decoding complex patterns or in dealing with simultaneous movements), there is a renewal of interest in the movement-based control approaches for prosthetics. The latter use residual limb movements rather than muscular activity as command inputs, in order to develop more natural and intuitive control techniques. Among those, several research works rely on the interjoint coordinations that naturally exist in human upper limb movements. These relationships are modeled to control the distal joints (e.g., elbow) based on the motions of proximal ones (e.g., shoulder). The regression techniques, used to model the coordinations, are various [Artificial Neural Networks, Principal Components Analysis (PCA), etc.] and yet, analysis of their performance and impact on the prosthesis control is missing in the literature. Is there one technique really more efficient than the others to model interjoint coordinations? To answer this question, we conducted an experimental campaign to compare the performance of three common regression techniques in the control of the elbow joint on a transhumeral prosthesis. Ten non-disabled subjects performed a reaching task, while wearing an elbow prosthesis which was driven by several interjoint coordination models obtained through different regression techniques. The models of the shoulder-elbow kinematic relationship were built from the recordings of fifteen different non-disabled subjects that performed a similar reaching task with their healthy arm. Among Radial Basis Function Networks (RBFN), Locally Weighted Regression (LWR), and PCA, RBFN was found to be the most robust, based on the analysis of several criteria including the quality of generated movements but also the compensatory strategies exhibited by users. Yet, RBFN does not significantly outperform LWR and PCA. The regression technique seems not to be the most significant factor for improvement of interjoint coordinations-based control. By characterizing the impact of the modeling techniques through closed-loop experiments with human users instead of purely offline simulations, this work could also help in improving movement-based control approaches and in bringing them closer to a real use by patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA