Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Genet ; 37(3): 279-291, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33046273

RESUMO

Effective synthesis of mammalian messenger (m)RNAs depends on many factors that together direct RNA polymerase II (pol II) through the different stages of the transcription cycle and ensure efficient cotranscriptional processing of mRNAs. In addition to the many proteins involved in transcription initiation, elongation, and termination, several noncoding (nc)RNAs also function as global transcriptional regulators. Understanding the mode of action of these non-protein regulators has been an intense area of research in recent years. Here, we describe how these ncRNAs influence key regulatory steps of the transcription process, to affect large numbers of genes. Through direct association with pol II or by modulating the activity of transcription or RNA processing factors, these regulatory RNAs perform critical roles in gene expression.


Assuntos
Cromatina/genética , RNA Polimerase II/genética , RNA não Traduzido/genética , Transcrição Gênica , Animais , Regulação da Expressão Gênica/genética , Humanos , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética
2.
Trends Genet ; 37(1): 86-97, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33077249

RESUMO

RNA binding proteins (RBPs) are ubiquitously found in all kingdoms of life. They are involved in a plethora of regulatory events, ranging from direct regulation of gene expression to guiding modification of RNA molecules. As bacterial regulators, RBPs can act alone or in concert with RNA-based regulators, such as small regulatory RNAs (sRNAs), riboswitches, or clustered regularly interspaced short palindromic repeats (CRISPR) RNAs. Various functions of RBPs, whether dependent or not on an RNA regulator, have been described in the past. However, the past decade has been a fertile ground for the development of novel high-throughput methods. These methods acted as stepping-stones for the discovery of new functions of RBPs and helped in the understanding of the molecular mechanisms behind previously described regulatory events. Here, we present an overview of the recently identified roles of major bacterial RBPs from different model organisms. Moreover, the tight relationship between RBPs and RNA-based regulators will be explored.


Assuntos
Bactérias/genética , Sistemas CRISPR-Cas , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Bactérias/metabolismo , Proteínas de Ligação a RNA/genética
3.
Funct Integr Genomics ; 24(5): 160, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264475

RESUMO

Mycobacterium tuberculosis (MTB) is a pathogen that is known for its ability to persist in harsh environments and cause chronic infections. Understanding the regulatory networks of MTB is crucial for developing effective treatments. Small regulatory RNAs (sRNAs) play important roles in gene expression regulation in all kingdoms of life, and their classification based solely on genomic location can be imprecise due to the computational-based prediction of protein-coding genes in bacteria, which often neglects segments of mRNA such as 5'UTRs, 3'UTRs, and intercistronic regions of operons. To address this issue, our study simultaneously discovered genomic features such as TSSs, UTRs, and operons together with sRNAs in the M. tuberculosis H37Rv strain (ATCC 27294) across multiple stress conditions. Our analysis identified 1,376 sRNA candidates and 8,173 TSSs in MTB, providing valuable insights into its complex regulatory landscape. TSS mapping enabled us to classify these sRNAs into more specific categories, including promoter-associated sRNAs, 5'UTR-derived sRNAs, 3'UTR-derived sRNAs, true intergenic sRNAs, and antisense sRNAs. Three of these sRNA candidates were experimentally validated using 3'-RACE-PCR: predictedRNA_0240, predictedRNA_0325, and predictedRNA_0578. Future characterization and validation are necessary to fully elucidate the functions and roles of these sRNAs in MTB. Our study is the first to simultaneously unravel TSSs and sRNAs in MTB and demonstrate that the identification of other genomic features, such as TSSs, UTRs, and operons, allows for more accurate and specific classification of sRNAs.


Assuntos
Mycobacterium tuberculosis , Óperon , RNA Bacteriano , Pequeno RNA não Traduzido , Sítio de Iniciação de Transcrição , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pequeno RNA não Traduzido/genética , RNA Bacteriano/genética , Regiões 5' não Traduzidas , Regulação Bacteriana da Expressão Gênica , Estresse Fisiológico/genética , Genoma Bacteriano , Regiões 3' não Traduzidas , Anotação de Sequência Molecular
4.
Biol Lett ; 20(7): 20240147, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982851

RESUMO

The nucleus interacts with the other organelles to perform essential functions of the eukaryotic cell. Mitochondria have their own genome and communicate back to the nucleus in what is known as mitochondrial retrograde response. Information is transferred to the nucleus in many ways, leading to wide-ranging changes in nuclear gene expression and culminating with changes in metabolic, regulatory or stress-related pathways. RNAs are emerging molecules involved in this signalling. RNAs encode precise information and are involved in highly target-specific signalling, through a wide range of processes known as RNA interference. RNA-mediated mitochondrial retrograde response requires these molecules to exit the mitochondrion, a process that is still mostly unknown. We suggest that the proteins/complexes translocases of the inner membrane, polynucleotide phosphorylase, mitochondrial permeability transition pore, and the subunits of oxidative phosphorylation complexes may be responsible for RNA export.


Assuntos
Núcleo Celular , Mitocôndrias , Mitocôndrias/metabolismo , Núcleo Celular/metabolismo , RNA/metabolismo , RNA/genética , Animais , Transporte de RNA , Células Eucarióticas/metabolismo , Eucariotos/metabolismo , Eucariotos/genética , Eucariotos/fisiologia , Transdução de Sinais
5.
Anaerobe ; 87: 102851, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583547

RESUMO

Interactions of bacteria with their viruses named bacteriophages or phages shape the bacterial genome evolution and contribute to the diversity of phages. RNAs have emerged as key components of several anti-phage defense systems in bacteria including CRISPR-Cas, toxin-antitoxin and abortive infection. Frequent association with mobile genetic elements and interplay between different anti-phage defense systems are largely discussed. Newly discovered defense systems such as retrons and CBASS include RNA components. RNAs also perform their well-recognized regulatory roles in crossroad of phage-bacteria regulatory networks. Both regulatory and defensive function can be sometimes attributed to the same RNA molecules including CRISPR RNAs. This review presents the recent advances on the role of RNAs in the bacteria-phage interactions with a particular focus on clostridial species including an important human pathogen, Clostridioides difficile.


Assuntos
Bactérias , Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bactérias/virologia , Bactérias/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Sistemas CRISPR-Cas , Clostridioides difficile/genética , Clostridioides difficile/virologia , Humanos
6.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760492

RESUMO

Pathogenic bacteria must rapidly adapt to ever-changing environmental signals resulting in metabolism remodeling. The carbon catabolite repression, mediated by the catabolite control protein A (CcpA), is used to express genes involved in utilization and metabolism of the preferred carbon source. Here, we have identified RsaI as a CcpA-repressed small non-coding RNA that is inhibited by high glucose concentrations. When glucose is consumed, RsaI represses translation initiation of mRNAs encoding a permease of glucose uptake and the FN3K enzyme that protects proteins against damage caused by high glucose concentrations. RsaI also binds to the 3' untranslated region of icaR mRNA encoding the transcriptional repressor of exopolysaccharide production and to sRNAs induced by the uptake of glucose-6 phosphate or nitric oxide. Furthermore, RsaI expression is accompanied by a decreased transcription of genes involved in carbon catabolism pathway and an activation of genes involved in energy production, fermentation, and nitric oxide detoxification. This multifaceted RNA can be considered as a metabolic signature when glucose becomes scarce and growth is arrested.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Glucose/deficiência , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Glucose/administração & dosagem , Redes e Vias Metabólicas , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Ribossomos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Edulcorantes/administração & dosagem , Transcriptoma
7.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629141

RESUMO

Numerous observations have supported the idea that various types of noncoding RNAs, including tRNA fragments (tRFs), are involved in communications between the host and its microbial community. The possibility of using their signaling function has stimulated the study of secreted RNAs, potentially involved in the interspecies interaction of bacteria. This work aimed at identifying such RNAs and characterizing their maturation during transport. We applied an approach that allowed us to detect oligoribonucleotides secreted by Prevotella copri (Segatella copri) or Rhodospirillum rubrum inside Escherichia coli cells. Four tRFs imported by E. coli cells co-cultured with these bacteria were obtained via chemical synthesis, and all of them affected the growth of E. coli. Their successive modifications in the culture medium and recipient cells were studied by high-throughput cDNA sequencing. Instead of the expected accidental exonucleolysis, in the milieu, we observed nonrandom cleavage by endonucleases continued in recipient cells. We also found intramolecular rearrangements of synthetic oligonucleotides, which may be considered traces of intermediate RNA circular isomerization. Using custom software, we estimated the frequency of such events in transcriptomes and secretomes of E. coli and observed surprising reproducibility in positions of such rare events, assuming the functionality of ring isoforms or their permuted derivatives in bacteria.


Assuntos
Escherichia coli , Espécies Introduzidas , Escherichia coli/genética , Reprodutibilidade dos Testes , RNA de Transferência/genética , Meios de Cultura , RNA
8.
Mol Microbiol ; 116(1): 126-139, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33560537

RESUMO

Small RNAs (sRNAs) are universal posttranscriptional regulators of gene expression and hundreds of sRNAs are frequently found in each and every bacterium. In order to coordinate cellular processes in response to ambient conditions, many sRNAs are differentially expressed. Here, we asked how these small regulators are regulated using Agrobacterium tumefaciens as a model system. Among the best-studied sRNAs in this plant pathogen are AbcR1 regulating numerous ABC transporters and PmaR, a regulator of peptidoglycan biosynthesis, motility, and ampicillin resistance. We report that the LysR-type regulator VtlR (also known as LsrB) controls expression of AbcR1 and PmaR. A vtlR/lsrB deletion strain showed growth defects, was sensitive to antibiotics and severely compromised in plant tumor formation. Transcriptome profiling by RNA-sequencing revealed more than 1,200 genes with altered expression in the mutant. Consistent with the function of VtlR/LsrB as regulator of AbcR1, many ABC transporter genes were affected. Interestingly, the transcription factor did not only control the expression of AbcR1 and PmaR. In the mutant, 102 sRNA genes were significantly up- or downregulated. Thus, our study uncovered VtlR/LsrB as the master regulator of numerous sRNAs. Thereby, the transcriptional regulator harnesses the regulatory power of sRNAs to orchestrate the expression of distinct sub-regulons.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , RNA Bacteriano/biossíntese , Pequeno RNA não Traduzido/biossíntese , Fatores de Transcrição/genética , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Agrobacterium tumefaciens/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Deleção de Genes , Peptidoglicano/biossíntese , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/genética
9.
BMC Pediatr ; 22(1): 225, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468817

RESUMO

Necrotizing enterocolitis (NEC) is a multifactorial and complex disease. Our knowledge of the cellular and genetic basis of NEC have expanded considerably as new molecular mechanisms have been identified. This article will focus on the current understanding of the molecular pathogenesis of NEC with a focus on the inflammatory, immune, infectious, and genetic mechanisms that drive disease development.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Doenças do Prematuro , Enterocolite Necrosante/genética , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/genética
10.
Annu Rev Microbiol ; 70: 299-316, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27482744

RESUMO

Staphylococcus aureus RNAIII is one of the main intracellular effectors of the quorum-sensing system. It is a multifunctional RNA that encodes a small peptide, and its noncoding parts act as antisense RNAs to regulate the translation and/or the stability of mRNAs encoding transcriptional regulators, major virulence factors, and cell wall metabolism enzymes. In this review, we explain how regulatory proteins and RNAIII are embedded in complex regulatory circuits to express virulence factors in a dynamic and timely manner in response to stress and environmental and metabolic changes.


Assuntos
Percepção de Quorum , RNA Bacteriano/metabolismo , Regulon , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Animais , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Humanos , RNA Bacteriano/genética , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Virulência , Fatores de Virulência/metabolismo
11.
Annu Rev Microbiol ; 70: 25-44, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297126

RESUMO

Gram-negative and gram-positive bacteria use a variety of enzymatic pathways to degrade mRNAs. Although several recent reviews have outlined these pathways, much less attention has been paid to the regulation of mRNA decay. The functional half-life of a particular mRNA, which affects how much protein is synthesized from it, is determined by a combination of multiple factors. These include, but are not necessarily limited to, (a) stability elements at either the 5' or the 3' terminus, (b) posttranscriptional modifications, (c) ribosome density on individual mRNAs, (d) small regulatory RNA (sRNA) interactions with mRNAs, (e) regulatory proteins that alter ribonuclease binding affinities, (f) the presence or absence of endonucleolytic cleavage sites, (g) control of intracellular ribonuclease levels, and (h) physical location within the cell. Changes in physiological conditions associated with environmental alterations can significantly alter the impact of these factors in the decay of a particular mRNA.


Assuntos
Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética
12.
RNA Biol ; 18(11): 1818-1833, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33406981

RESUMO

The Gac-rsm pathway is a global regulatory network that governs mayor lifestyle and metabolic changes in gamma-proteobacteria. In a previous study, we uncovered the role of CsrA proteins promoting growth and repressing motility, alginate production and virulence in the model phytopathogen Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we focus on the expression and regulation of the rsm regulatory sRNAs, since Pto DC3000 exceptionally has seven variants (rsmX1-5, rsmY and rsmZ). The presented results offer further insights into the functioning of the complex Gac-rsm pathway and the interplay among its components. Overall, rsm expressions reach maximum levels at high cell densities, are unaffected by surface detection, and require GacA for full expression. The rsm levels of expression and GacA-dependence are determined by the sequences found in their -35/-10 promoter regions and GacA binding boxes, respectively. rsmX5 stands out for being the only rsm in Pto DC3000 whose high expression does not require GacA, constituting the main component of the total rsm pool in a gacA mutant. The deletion of rsmY and rsmZ had minor effects on Pto DC3000 motility and virulence phenotypes, indicating that rsmX1-5 can functionally replace them. On the other hand, rsmY or rsmZ overexpression in a gacA mutant did not revert its phenotype. Additionally, a negative feedback regulatory loop in which the CsrA3 protein promotes its own titration by increasing the levels of several rsm RNAs in a GacA-dependent manner has been disclosed as part of this work.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas syringae/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/genética , Pseudomonas syringae/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo
13.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801310

RESUMO

BACKGROUND: The molecular regulation of increased MGMT expression in human brain tumors, the associated regulatory elements, and linkages of these to its epigenetic silencing are not understood. Because the heightened expression or non-expression of MGMT plays a pivotal role in glioma therapeutics, we applied bioinformatics and experimental tools to identify the regulatory elements in the MGMT and neighboring EBF3 gene loci. RESULTS: Extensive genome database analyses showed that the MGMT genomic space was rich in and harbored many undescribed RNA regulatory sequences and recognition motifs. We extended the MGMT's exon-1 promoter to 2019 bp to include five overlapping alternate promoters. Consensus sequences in the revised promoter for (a) the transcriptional factors CTCF, NRF1/NRF2, GAF, (b) the genetic switch MYC/MAX/MAD, and (c) two well-defined p53 response elements in MGMT intron-1, were identified. A putative protein-coding or non-coding RNA sequence was located in the extended 3' UTR of the MGMT transcript. Eleven non-coding RNA loci coding for miRNAs, antisense RNA, and lncRNAs were identified in the MGMT-EBF3 region and six of these showed validated potential for curtailing the expression of both MGMT and EBF3 genes. ChIP analysis verified the binding site in MGMT promoter for CTCF which regulates the genomic methylation and chromatin looping. CTCF depletion by a pool of specific siRNA and shRNAs led to a significant attenuation of MGMT expression in human GBM cell lines. Computational analysis of the ChIP sequence data in ENCODE showed the presence of NRF1 in the MGMT promoter and this occurred only in MGMT-proficient cell lines. Further, an enforced NRF2 expression markedly augmented the MGMT mRNA and protein levels in glioma cells. CONCLUSIONS: We provide the first evidence for several new regulatory components in the MGMT gene locus which predict complex transcriptional and posttranscriptional controls with potential for new therapeutic avenues.


Assuntos
Biomarcadores Tumorais/metabolismo , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas Supressoras de Tumor/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Genômica , Glioma/genética , Glioma/patologia , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA não Traduzido/genética , Proteínas Supressoras de Tumor/genética
14.
J Neurosci ; 39(39): 7759-7777, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31405929

RESUMO

The etiology of the autoimmune disorder systemic lupus erythematosus (SLE) remains poorly understood. In neuropsychiatric SLE (NPSLE), autoimmune responses against neural self-antigens find expression in neurological and cognitive alterations. SLE autoantibodies often target nucleic acids, including RNAs and specifically RNA domains with higher-order structural content. We report that autoantibodies directed against neuronal regulatory brain cytoplasmic (BC) RNAs were generated in a subset of SLE patients. By contrast, anti-BC RNA autoantibodies (anti-BC abs) were not detected in sera from patients with autoimmune diseases other than SLE (e.g., rheumatoid arthritis or multiple sclerosis) or in sera from healthy subjects with no evidence of disease. SLE anti-BC abs belong to the IgG class of immunoglobulins and target both primate BC200 RNA and rodent BC1 RNA. They are specifically directed at architectural motifs in BC RNA 5' stem-loop domains that serve as dendritic targeting elements (DTEs). SLE anti-BC abs effectively compete with RNA transport factor heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) for DTE access and significantly diminish BC RNA delivery to synapto-dendritic sites of function. In vivo experiments with male BALB/c mice indicate that, upon lipopolysaccharide-induced opening of the blood-brain barrier, SLE anti-BC abs are taken up by CNS neurons where they significantly impede localization of endogenous BC1 RNA to synapto-dendritic domains. Lack of BC1 RNA causes phenotypic abnormalities including epileptogenic responses and cognitive dysfunction. The combined data indicate a role for anti-BC RNA autoimmunity in SLE and its neuropsychiatric manifestations.SIGNIFICANCE STATEMENT Although clinical manifestations of neuropsychiatric lupus are well recognized, the underlying molecular-cellular alterations have been difficult to determine. We report that sera of a subset of lupus patients contain autoantibodies directed at regulatory brain cytoplasmic (BC) RNAs. These antibodies, which we call anti-BC abs, target the BC RNA 5' domain noncanonical motif structures that specify dendritic delivery. Lupus anti-BC abs effectively compete with RNA transport factor heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) for access to BC RNAs. As a result, hnRNP A2 is displaced, and BC RNAs are impaired in their ability to reach synapto-dendritic sites of function. The results reveal an unexpected link between BC RNA autoantibody recognition and dendritic RNA targeting. Cellular RNA dysregulation may thus be a contributing factor in the pathogenesis of neuropsychiatric lupus.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Neurônios/metabolismo , RNA Citoplasmático Pequeno/imunologia , RNA Citoplasmático Pequeno/metabolismo , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Feminino , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transporte de RNA/fisiologia
15.
Appl Microbiol Biotechnol ; 104(2): 833-852, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31848654

RESUMO

Bacillus pumilus, an endospore-forming soil bacterium, produces a wide array of extracellular proteins, such as proteases, which are already applied in the chemical, detergent and leather industries. Small noncoding regulatory RNAs (sRNAs) in bacteria are important RNA regulators that act in response to various environmental signals. Here, an RNA-seq-based transcriptome analysis was applied to B. pumilus SCU11, a strain that produces extracellular alkaline protease, across various growth phases of the protease fermentation process. Through bioinformatics screening of the sequencing data and visual inspection, 84 putative regulatory sRNAs were identified in B. pumilus, including 21 antisense sRNAs and 63 sRNAs in intergenic regions. We experimentally validated the expression of 48 intergenic sRNAs by quantitative RT-PCR (qRT-PCR). Meanwhile, the expression of 6 novel sRNAs was confirmed by northern blotting, and the expression profiles of 5 sRNAs showed close correlation with the growth phase. We revealed that the sRNA Bpsr137 was involved in flagellum and biofilm formation in B. pumilus. The identification of a global set of sRNAs increases the inventory of regulatory sRNAs in Bacillus and implies the important regulatory roles of sRNA in B. pumilus. These findings will contribute another dimension to the optimization of crucial metabolic activities of B. pumilus during a productive fermentation process.


Assuntos
Bacillus pumilus/crescimento & desenvolvimento , Bacillus pumilus/genética , Peptídeo Hidrolases/metabolismo , Pequeno RNA não Traduzido/biossíntese , Bacillus pumilus/metabolismo , Northern Blotting , Biologia Computacional , Fermentação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
16.
Int J Mol Sci ; 21(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419375

RESUMO

Ribosomal RNA (rRNA) biogenesis takes place in the nucleolus, the most prominent condensate of the eukaryotic nucleus. The proper assembly and integrity of the nucleolus reflects the accurate synthesis and processing of rRNAs which in turn, as major components of ribosomes, ensure the uninterrupted flow of the genetic information during translation. Therefore, the abundant production of rRNAs in a precisely functional nucleolus is of outmost importance for the cell viability and requires the concerted action of essential enzymes, associated factors and epigenetic marks. The coordination and regulation of such an elaborate process depends on not only protein factors, but also on numerous regulatory non-coding RNAs (ncRNAs). Herein, we focus on RNA-mediated mechanisms that control the synthesis, processing and modification of rRNAs in mammals. We highlight the significance of regulatory ncRNAs in rRNA biogenesis and the maintenance of the nucleolar morphology, as well as their role in human diseases and as novel druggable molecular targets.


Assuntos
Nucléolo Celular/genética , RNA Ribossômico/biossíntese , RNA não Traduzido/genética , Ribossomos/genética , Regulação da Expressão Gênica/genética , Humanos , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética
17.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036726

RESUMO

Vibrio cholerae, the facultative pathogen responsible for cholera disease, continues to pose a global health burden. Its persistence can be attributed to a flexible genetic tool kit that allows for adaptation to different environments with distinct carbon sources, including the six-carbon sugar alcohol mannitol. V. cholerae takes up mannitol through the transporter protein MtlA, whose production is downregulated at the posttranscriptional level by MtlS, a cis antisense small RNA (sRNA) whose promoter lies within the mtlA open reading frame. Though it is known that mtlS expression is robust under growth conditions lacking mannitol, it has remained elusive as to what factors govern the steady-state levels of MtlS. Here, we show that manipulating mtlA transcription is sufficient to drive inverse changes in MtlS levels, likely through transcriptional interference. This work has uncovered a cis-acting sRNA whose expression pattern is predominantly controlled by transcription of the sRNA's target gene.IMPORTANCEVibrio cholerae is a bacterial pathogen that relies on genetic tools, such as regulatory RNAs, to adapt to changing extracellular conditions. While many studies have focused on how these regulatory RNAs function, fewer have focused on how they are themselves modulated. V. cholerae expresses the noncoding RNA MtlS, which can regulate mannitol transport and use, and here we demonstrate that MtlS levels are controlled by the level of transcription occurring in the antisense direction. Our findings provide a model of regulation describing how bacteria like V. cholerae can modulate the levels of an important regulatory RNA. Our work contributes to knowledge of how bacteria deploy regulatory RNAs as an adaptive mechanism to buffer against environmental flux.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/genética , RNA Antissenso/genética , Transcrição Gênica , Vibrio cholerae/genética , Regiões Promotoras Genéticas , RNA Bacteriano/genética , RNA não Traduzido/genética
18.
BMC Genomics ; 20(1): 236, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902048

RESUMO

BACKGROUND: The human pathogen Streptococcus pyogenes, or group A Streptococcus, is responsible for mild infections to life-threatening diseases. To facilitate the characterization of regulatory networks involved in the adaptation of this pathogen to its different environments and their evolution, we have determined the primary transcriptome of a serotype M1 S. pyogenes strain at single-nucleotide resolution and compared it with that of Streptococcus agalactiae, also from the pyogenic group of streptococci. RESULTS: By using a combination of differential RNA-sequencing and oriented RNA-sequencing we have identified 892 transcription start sites (TSS) and 885 promoters in the S. pyogenes M1 strain S119. 8.6% of S. pyogenes mRNAs were leaderless, among which 81% were also classified as leaderless in S. agalactiae. 26% of S. pyogenes transcript 5' untranslated regions (UTRs) were longer than 60 nt. Conservation of long 5' UTRs with S. agalactiae allowed us to predict new potential regulatory sequences. In addition, based on the mapping of 643 transcript ends in the S. pyogenes strain S119, we constructed an operon map of 401 monocistrons and 349 operons covering 81.5% of the genome. One hundred fifty-six operons and 254 monocistrons retained the same organization, despite multiple genomic reorganizations between S. pyogenes and S. agalactiae. Genomic reorganization was found to more often go along with variable promoter sequences and 5' UTR lengths. Finally, we identified 117 putative regulatory RNAs, among which nine were regulated in response to magnesium concentration. CONCLUSIONS: Our data provide insights into transcriptome evolution in pyogenic streptococci and will facilitate the analysis of genetic polymorphisms identified by comparative genomics in S. pyogenes.


Assuntos
Perfilação da Expressão Gênica , Streptococcus agalactiae/genética , Streptococcus pyogenes/genética , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Sequência de Bases , Genômica , Análise de Sequência de RNA , Especificidade da Espécie , Sítio de Iniciação de Transcrição
19.
Cell Mol Life Sci ; 74(13): 2503-2511, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28224202

RESUMO

Zebrafish is an important model to study developmental biology and human diseases. However, an effective approach to achieve spatial and temporal gene knockout in zebrafish has not been well established. In this study, we have developed a new approach, namely bacterial artificial chromosome-rescue-based knockout (BACK), to achieve conditional gene knockout in zebrafish using the Cre/loxP system. We have successfully deleted the DiGeorge syndrome critical region gene 8 (dgcr8) in zebrafish germ line and demonstrated that the maternal-zygotic dgcr8 (MZdgcr8) embryos exhibit MZdicer-like phenotypes with morphological defects which could be rescued by miR-430, indicating that canonical microRNAs play critical role in early development. Our findings establish that Cre/loxP-mediated tissue-specific gene knockout could be achieved using this BACK strategy and that canonical microRNAs play important roles in early embryonic development in zebrafish.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Técnicas de Inativação de Genes/métodos , Células Germinativas/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Desenvolvimento Embrionário/genética , Éxons/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação/genética , Processamento Pós-Transcricional do RNA/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
20.
Int J Mol Sci ; 19(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486355

RESUMO

Cystic fibrosis (CF) is the most life-limiting autosomal recessive disorder in Caucasians. CF is characterized by abnormal viscous secretions that impair the function of several tissues, with chronic bacterial airway infections representing the major cause of early decease of these patients. Pseudomonas aeruginosa and bacteria from the Burkholderia cepacia complex (Bcc) are the leading pathogens of CF patients' airways. A wide array of virulence factors is responsible for the success of infections caused by these bacteria, which have tightly regulated responses to the host environment. Small noncoding RNAs (sRNAs) are major regulatory molecules in these bacteria. Several approaches have been developed to study P. aeruginosa sRNAs, many of which were characterized as being involved in the virulence. On the other hand, the knowledge on Bcc sRNAs remains far behind. The purpose of this review is to update the knowledge on characterized sRNAs involved in P. aeruginosa virulence, as well as to compile data so far achieved on sRNAs from the Bcc and their possible roles on bacteria virulence.


Assuntos
Complexo Burkholderia cepacia/genética , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Animais , Infecções por Burkholderia/etiologia , Complexo Burkholderia cepacia/patogenicidade , Fibrose Cística/complicações , Fibrose Cística/genética , Humanos , Pneumonia Bacteriana/etiologia , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa/patogenicidade , Virulência/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA