Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063336

RESUMO

This study investigated the effects of ultrasound-assisted soybean lecithin (SL) on the rehydration behavior and physical properties of egg white protein powder (EWPP) and its ability to enhance the efficacy of EWPP instant solubility. The results of rehydration, including wettability and dispersibility, indicated that ultrasound (200 W)-assisted SL (5 g/L) addition had the shortest wetting time and dispersion time, which were 307.14 ± 7.00 s and 20.95 ± 2.27 s, respectively. In terms of powder properties, the EWPP with added SL had lower lightness, moisture content and bulk density. In addition, the increase in average particle size, net negative charge, free sulfhydryl group content and surface hydrophobicity indicated that ultrasound treatment facilitated the protein structures unfolding and promoted the formation of SL-EWP complexes. Overall, our study provided a new perspective for the food industry regarding using ultrasound technology to produce instant EWPP with higher biological activity and more complete nutritional value.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985987

RESUMO

Bulk nanobubbles (BNBs) have widespread applications in various fields of science due to numerous peculiar characteristics. Despite significant applications, only limited investigations are available on the application of BNBs in food processing. In the present study, a continuous acoustic cavitation technique was used to generate bulk nanobubbles (BNBs). The aim of this study was to evaluate the influence of BNB incorporation on the processability and spray drying of milk protein concentrate (MPC) dispersions. MPC powders were reconstituted to the desired total solids and incorporated with BNBs using acoustic cavitation as per the experimental design. The control MPC (C-MPC) and BNB-incorporated MPC (BNB-MPC) dispersions were analyzed for rheological, functional, and microstructural properties. The viscosity significantly decreased (p < 0.05) at all the amplitudes studied. The microscopic observations of BNB-MPC dispersions showed less aggregated microstructures and greater structural differences compared with C-MPC dispersions, therefore lowering the viscosity. The viscosity of BNB incorporated (90% amplitude) MPC dispersions at 19% total solids at a shear rate of 100 s-1 significantly decreased to 15.43 mPa·s (C-MPC: 201 mPa·s), a net decrease in viscosity by ~90% with the BNB treatment. The control and BNB incorporated MPC dispersions were spray-dried, and the resultant powders were characterized in terms of powder microstructure and rehydration characteristics. Focused beam reflectance measurement of the BNB-MPC powders indicated higher counts of fine particles (<10 µm) during dissolution, signifying that BNB-MPC powders exhibited better rehydration properties than the C-MPC powders. The enhanced powder rehydration with the BNB incorporation was attributed to the powder microstructure. Overall, reducing the viscosity of feed by BNB incorporation can enhance the performance of the evaporator. This study, therefore, recommends the possibility of using BNB treatment for more efficient drying while improving the functional properties of the resultant MPC powders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA