Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 37(7): e23005, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37289107

RESUMO

Fibroblast accumulation and extracellular matrix (ECM) deposition are common critical steps for the progression of organ fibrosis, but the precise molecular mechanisms remain to be fully investigated. We have previously demonstrated that lysophosphatidic acid contributes to organ fibrosis through the production of connective tissue growth factor (CTGF) via actin cytoskeleton-dependent signaling, myocardin-related transcription factor family (MRTF) consisting of MRTF-A and MRTF-B-serum response factor (SRF) pathway. In this study, we investigated the role of the MRTF-SRF pathway in the development of renal fibrosis, focusing on the regulation of ECM-focal adhesions (FA) in renal fibroblasts. Here we showed that both MRTF-A and -B were required for the expressions of ECM-related molecules such as lysyl oxidase family members, type I procollagen and fibronectin in response to transforming growth factor (TGF)-ß1 . TGF-ß1 -MRTF-SRF pathway induced the expressions of various components of FA such as integrin α subunits (αv , α2 , α11 ) and ß subunits (ß1 , ß3 , ß5 ) as well as integrin-linked kinase (ILK). On the other hand, the blockade of ILK suppressed TGF-ß1 -induced MRTF-SRF transcriptional activity, indicating a mutual relationship between MRTF-SRF and FA. Myofibroblast differentiation along with CTGF expression was also dependent on MRTF-SRF and FA components. Finally, global MRTF-A deficient and inducible fibroblast-specific MRTF-B deficient mice (MRTF-AKO BiFBKO mice) are protected from renal fibrosis with adenine administration. Renal expressions of ECM-FA components and CTGF as well as myofibroblast accumulation were suppressed in MRTF-AKO BiFBKO mice. These results suggest that the MRTF-SRF pathway might be a therapeutic target for renal fibrosis through the regulation of components forming ECM-FA in fibroblasts.


Assuntos
Fibroblastos , Nefropatias , Fatores de Transcrição , Animais , Camundongos , Actinas/metabolismo , Fibroblastos/metabolismo , Fibrose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia
2.
FASEB J ; 36(11): e22606, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36250931

RESUMO

Kinesin family member 26b (Kif26b) is essential for kidney development, and its deletion in mice leads to kidney agenesis. However, the roles of this gene in adult settings remain elusive. Thus, this study aims to investigate the role of Kif26b in the progression of renal fibrosis. A renal fibrosis model with adenine administration using Kif26b heterozygous mice and wild-type mice was established. Renal fibrosis and the underlying mechanism were investigated. The underlying pathways and functions of Kif26b were evaluated in an in vitro model using primary renal fibroblasts. Kif26b heterozygous mice were protected from renal fibrosis with adenine administration. Renal expressions of connective tissue growth factor (CTGF) and myofibroblast accumulation were reduced in Kif26b heterozygous mice. The expression of nonmuscle myosin heavy chain II (NMHCII), which binds to the C-terminus of Kif26b protein, was also suppressed in Kif26b heterozygous mice. The in vitro study revealed reduced expressions of CTGF, α-smooth muscle actin, and myosin heavy chain 9 (Myh9) via transfection with siRNAs targeting Kif26b in renal fibroblasts (RFB). RFBs, which were transfected by the expression vector of Kif26b, demonstrated higher expressions of these genes than non-transfected cells. Finally, Kif26b suppression and NMHCII blockage led to reduced abilities of migration and collagen gel contraction in renal fibroblasts. Taken together, Kif26b contributes to the progression of interstitial fibrosis via migration and myofibroblast differentiation through Myh9 in the renal fibrosis model. Blockage of this pathway at appropriate timing might be a therapeutic approach for renal fibrosis.


Assuntos
Rim , Cinesinas , Miofibroblastos , Animais , Camundongos , Actinas/genética , Actinas/metabolismo , Adenina/metabolismo , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/metabolismo , Fibrose , Rim/metabolismo , Cinesinas/genética , Miofibroblastos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Diferenciação Celular , Movimento Celular
3.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639099

RESUMO

Renal fibrosis is a progressive chronic kidney disease that ultimately leads to end-stage renal failure. Despite several approaches to combat renal fibrosis, an experimental model to evaluate currently available drugs is not ideal. We developed fibrosis-mimicking models using three-dimensional (3D) co-culture devices designed with three separate layers of tubule interstitium, namely, epithelial, fibroblastic, and endothelial layers. We introduced human renal proximal tubular epithelial cells (HK-2), human umbilical-vein endothelial cells, and patient-derived renal fibroblasts, and evaluated the effects of transforming growth factor-ß (TGF-ß) and TGF-ß inhibitor treatment on this renal fibrosis model. The expression of the fibrosis marker alpha smooth muscle actin upon TGF-ß1 treatment was augmented in monolayer-cultured HK-2 cells in a 3D disease model. In the vascular compartment of renal fibrosis models, the density of vessels was increased and decreased in the TGF-ß-treated group and TGF-ß-inhibitor treatment group, respectively. Multiplex ELISA using supernatants in the TGF-ß-stimulating 3D models showed that pro-inflammatory cytokine and growth factor levels including interleukin-1 beta, tumor necrosis factor alpha, basic fibroblast growth factor, and TGF-ß1, TGF-ß2, and TGF-ß3 were increased, which mimicked the fibrotic microenvironments of human kidneys. This study may enable the construction of a human renal fibrosis-mimicking device model beyond traditional culture experiments.


Assuntos
Endotélio Vascular/patologia , Fibroblastos/patologia , Fibrose/patologia , Túbulos Renais Proximais/patologia , Impressão Tridimensional/instrumentação , Fator de Crescimento Transformador beta1/farmacologia , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose/induzido quimicamente , Fibrose/metabolismo , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo
4.
J Am Soc Nephrol ; 29(1): 168-181, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142050

RESUMO

Collectin-11 is a recently described soluble C-type lectin, a pattern recognition molecule of the innate immune system that has distinct roles in host defense, embryonic development, and acute inflammation. However, little is known regarding the role of collectin-11 in tissue fibrosis. Here, we investigated collectin-11 in the context of renal ischemia-reperfusion injury. Compared with wild-type littermate controls, Collec11 deficient (CL-11-/- ) mice had significantly reduced renal functional impairment, tubular injury, renal leukocyte infiltration, renal tissue inflammation/fibrogenesis, and collagen deposition in the kidneys after renal ischemia-reperfusion injury. In vitro, recombinant collectin-11 potently promoted leukocyte migration and renal fibroblast proliferation in a carbohydrate-dependent manner. Additionally, compared with wild-type kidney grafts, CL-11-/-mice kidney grafts displayed significantly reduced tubular injury and collagen deposition after syngeneic kidney transplant. Our findings demonstrate a pathogenic role for collectin-11 in the development of tubulointerstitial fibrosis and suggest that local collectin-11 promotes this fibrosis through effects on leukocyte chemotaxis and renal fibroblast proliferation. This insight into the pathogenesis of tubulointerstitial fibrosis may have implications for CKD mediated by other causes as well.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quimiotaxia de Leucócito/genética , Colectinas/genética , Colectinas/farmacologia , Túbulos Renais/patologia , Nefrite/genética , Aloenxertos/patologia , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Colágeno/metabolismo , Colectinas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/fisiologia , Fibrose , Transplante de Rim , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Nefrite/etiologia , Nefrite/patologia , Nefrite/fisiopatologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia
5.
Phytomedicine ; 115: 154809, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37087791

RESUMO

BACKGROUND: Activation of renal fibroblasts into myofibroblasts plays an important role in promoting renal interstitial fibrosis (RIF). Ginkgo biloba extract (EGb) can alleviate RIF induced by cisplatin (CDDP). PURPOSE: To elucidate the effect of EGb treatment on cisplatin-induced RIF and reveal its potential mechanism. METHODS: The two main active components in EGb were determined by high-performance liquid chromatography (HPLC) analysis. Rats were induced by CDDP and then treated with EGb, 2ME2 (HIF-1α inhibitor) or amifostine. After HK-2 cells and HIF-1α siRNA HK-2 cells were treated with CDDP, EGb or amifostine, the conditioned medium from each group was cultured with NRK-49F cells. The renal function of rats was detected. The renal damage and fibrosis were evaluated by H&E and Masson trichrome staining. The IL-6 content in the cell medium was detected by ELISA. The expression levels of indicators related to renal fibrosis and signaling pathway were examined by western blotting and qRT-PCR. RESULTS: HPLC analysis showed that the contents of quercetin and kaempferol in EGb were 36.0 µg/ml and 45.7 µg/ml, respectively. In vivo, EGb and 2ME2 alleviated renal damage and fibrosis, as well as significantly decreased the levels of α-SMA, HIF-1α, STAT3 and IL-6 in rat tissues induced by CDDP. In vitro, the levels of HIF-1α, STAT3 and IL-6 were significantly increased in HK-2 cells and HIF-1α siRNA HK-2 cells induced by CDDP. Notably, HIF-1α siRNA significantly decreased the levels of HIF-1α, STAT3 and IL-6 in HK-2 cells, as well as the IL-6 level in medium from HK-2 cells. Additionally, the α-SMA level in NRK-49F cells was significantly increased after being cultured with conditioned medium from HK-2 cells or HIF-1α siRNA HK-2 cells exposed to CDDP. Furthermore, exogenous IL-6 increased the α-SMA level in NRK-49F cells. Importantly, the expression levels of the above-mentioned indicators were significantly decreased after the HK-2 cells and HIF-1α siRNA HK-2 cells were treated with EGb. CONCLUSION: This study revealed that EGb improves CDDP-induced RIF, and the mechanism may be related to its inhibition of the renal fibroblast activation by down-regulating the HIF-1α/STAT3/IL-6 pathway in renal tubular epithelial cells.


Assuntos
Amifostina , Nefropatias , Ratos , Animais , Cisplatino/efeitos adversos , Interleucina-6/metabolismo , Amifostina/metabolismo , Amifostina/farmacologia , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Rim , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Ginkgo biloba , Fibroblastos , RNA Interferente Pequeno/farmacologia , Fibrose , Células Epiteliais/metabolismo
6.
BMC Complement Med Ther ; 21(1): 12, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407391

RESUMO

BACKGROUND: Activation of renal fibroblasts is a critical mechanism in the process of renal fibrosis. As a commonly used herbal formula, Shenkang (SK) has been found to attenuate renal fibrosis and renal parenchyma destruction. However, the effect of SK on renal fibroblast activation in unilateral ureteral obstruction (UUO) mice and its molecular mechanism remain undetermined. The present study was performed to elucidate the effect of SK on renal fibroblast activation and renal fibrosis, as well as the potential underlying mechanism, in both NRK-49F cells and UUO mice. METHODS: NRK-49F cells were stimulated with 10 ng/ml TGF-ß1 for 48 h. After SK treatment, the CCK-8 method was used to evaluate cell viability. Thirty-six C57BL/6 mice were randomly divided into the sham group, UUO group, angiotensin receptor blocker (ARB) group, and SK high-, moderate- and low-dose groups. UUO was induced in mice except those in the sham group. Drugs were administered 1 day later. On the 13th day, the fractional anisotropy (FA) value was determined by MRI to evaluate the degree of renal fibrosis. After 14 days, serum indexes were assessed. Hematoxylin and eosin (HE) and Sirius red staining were used to observe pathological morphology and the degree of fibrosis of the affected kidney. Western blotting and PCR were used to assess the expression of related molecules in both cells and animals at the protein and gene levels. RESULTS: Our results showed that SK reduced extracellular matrix (ECM) and α-smooth muscle actin (α-SMA) expression both in vitro and in vivo and attenuated renal fibrosis and the pathological lesion degree after UUO, suppressing JAK2/STAT3 activation. Furthermore, we found that SK regulated the JAK2/STAT3 pathway regulators peroxiredoxin 5 (Prdx5) in vitro and suppressor of cytokine signaling protein 1 (SOCS1) and SOCS3 in vivo. CONCLUSIONS: These results indicated that SK inhibited fibroblast activation by regulating the JAK2/STAT3 pathway, which may be a mechanism underlying its protective action in renal fibrosis.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Fibroblastos/efeitos dos fármacos , Janus Quinase 2/metabolismo , Nefroesclerose/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Imagem de Tensor de Difusão , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose , Rim/diagnóstico por imagem , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Nefroesclerose/patologia , Peroxirredoxinas/metabolismo , Fitoterapia , Ratos , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fator de Crescimento Transformador beta1 , Obstrução Ureteral
7.
Curr Pharm Biotechnol ; 21(11): 1107-1118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32196447

RESUMO

OBJECTIVE: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown. MATERIALS AND METHODS: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-ß1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 µM), followed by the stimulation of TGF-ß1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-ß1. RESULTS: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-ß1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts. CONCLUSION: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apigenina/farmacologia , Fibroblastos/efeitos dos fármacos , Rim/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Apigenina/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Rim/metabolismo , Rim/patologia , Nefropatias/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/genética , Fosforilação , Ratos , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA