Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ecol Lett ; 27(3): e14401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468439

RESUMO

Ecosystems that are coupled by reciprocal flows of energy and nutrient subsidies can be viewed as a single "meta-ecosystem." Despite these connections, the reciprocal flow of subsidies is greatly asymmetrical and seasonally pulsed. Here, we synthesize existing literature on stream-riparian meta-ecosystems to quantify global patterns of the amount of subsidy consumption by organisms, known as "allochthony." These resource flows are important since they can comprise a large portion of consumer diets, but can be disrupted by human modification of streams and riparian zones. Despite asymmetrical subsidy flows, we found stream and riparian consumer allochthony to be equivalent. Although both fish and stream invertebrates rely on seasonally pulsed allochthonous resources, we find allochthony varies seasonally only for fish, being nearly three times greater during the summer and fall than during the winter and spring. We also find that consumer allochthony varies with feeding traits for aquatic invertebrates, fish, and terrestrial arthropods, but not for terrestrial vertebrates. Finally, we find that allochthony varies by climate for aquatic invertebrates, being nearly twice as great in arid climates than in tropical climates, but not for fish. These findings are critical to understanding the consequences of global change, as ecosystem connections are being increasingly disrupted.


Assuntos
Ecossistema , Rios , Animais , Humanos , Cadeia Alimentar , Invertebrados , Peixes
2.
Oecologia ; 204(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38244058

RESUMO

Marine resource subsidies alter consumer dynamics of recipient populations in coastal systems. The response to these subsidies by generalist consumers is often not uniform, creating inter- and intrapopulation diet variation and niche diversification that may be intensified across heterogeneous landscapes. We sampled western fence lizards, Sceloporus occidentalis, from Puget Sound beaches and coastal and inland forest habitats, in addition to the lizards' marine and terrestrial prey items to quantify marine and terrestrial resource use with stable isotope analysis and mixing models. Beach lizards had higher average δ13C and δ15N values compared to coastal and inland forest lizards, exhibiting a strong mixing line between marine and terrestrial prey items. Across five beach sites, lizard populations received 20-51% of their diet from marine resources, on average, with individual lizards ranging between 7 and 86% marine diet. The hillslope of the transition zone between marine and terrestrial environments at beach sites was positively associated with marine-based diets, as the steepest sloped beach sites had the highest percent marine diets. Within-beach variation in transition zone slope was positively correlated with the isotopic niche space of beach lizard populations. These results demonstrate that physiography of transitional landscapes can mediate resource flow between environments, and variable habitat topography promotes niche diversification within lizard populations. Marine resource subsidization of Puget Sound beach S. occidentalis populations may facilitate occupation of the northwesternmost edge of the species range. Shoreline restoration and driftwood beach habitat conservation are important to support the unique ecology of Puget Sound S. occidentalis.


Assuntos
Ecossistema , Lagartos , Animais , Ecologia , Florestas , Lagartos/fisiologia
3.
Proc Biol Sci ; 290(1995): 20230126, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36946118

RESUMO

The influence of resource subsidies on animal growth, survival and reproduction is well understood, but their ultimate effects on life history have been less explored. Some wild species have a partially migratory life history, wherein migration is dictated based upon threshold traits regulated in part by the seasonal availability of resources. We conducted a large-scale field manipulation experiment where we provided a terrestrial invertebrate subsidy to red-spotted masu salmon. Individuals in stream reaches that received a subsidy had, on average, a 53% increase in growth rate relative to those in control reaches. This increased growth resulted in a greater proportion of individuals reaching the threshold body size and smolting in the autumn. Consequently, 19-55% of females in subsidized reaches became migratory, whereas 0-14% became migratory in the control reaches. Our findings highlight seasonal ecosystem linkage as a key ecosystem property for maintaining migratory polymorphism in partially migratory animals.


Assuntos
Ecossistema , Salmonidae , Animais , Feminino , Estações do Ano , Invertebrados , Salmão , Migração Animal
4.
Ecol Lett ; 24(3): 594-607, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33368953

RESUMO

Positive interactions are sensitive to human activities, necessitating synthetic approaches to elucidate broad patterns and predict future changes if these interactions are altered or lost. General understanding of freshwater positive interactions has been far outpaced by knowledge of these important relationships in terrestrial and marine ecosystems. We conducted a global meta-analysis to evaluate the magnitude of positive interactions across freshwater habitats. In 340 studies, we found substantial positive effects, with facilitators increasing beneficiaries by, on average, 81% across all taxa and response variables. Mollusks in particular were commonly studied as both facilitators and beneficiaries. Amphibians were one group benefiting the most from positive interactions, yet few studies investigated amphibians. Invasive facilitators had stronger positive effects on beneficiaries than non-invasive facilitators. We compared positive effects between high- and low-stress conditions and found no difference in the magnitude of benefit in the subset of studies that manipulated stressors. Future areas of research include understudied facilitators and beneficiaries, the stress gradient hypothesis, patterns across space or time and the influence of declining taxa whose elimination would jeopardise fragile positive interaction networks. Freshwater positive interactions occur among a wide range of taxa, influence populations, communities and ecosystem processes and deserve further exploration.


Assuntos
Ecossistema , Espécies Introduzidas , Água Doce , Atividades Humanas , Humanos
5.
Oecologia ; 192(1): 227-239, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31834515

RESUMO

The production and fate of seaweed detritus is a major unknown in the global C-budget. Knowing the quantity of detritus produced, the form it takes (size) and its timing of delivery are key to understanding its role as a resource subsidy to secondary production and/or its potential contribution to C-sequestration. We quantified the production and release of detritus from 10 Laminaria hyperborea sites in northern Norway (69.6° N). Kelp biomass averaged 770 ± 100 g C m-2 while net production reached 499 ± 50 g C m-2 year-1, with most taking place in spring when new blades were formed. Production of biomass was balanced by a similar formation of detritus (478 ± 41 g C m-2 year-1), and both were unrelated to wave exposure when compared across sites. Distal blade erosion accounted for 23% of the total detritus production and was highest during autumn and winter, while dislodgment of whole individuals and/or whole blades corresponded to 24% of the detritus production. Detachment of old blades constituted the largest source of kelp detritus, accounting for > 50% of the total detrital production. Almost 80% of the detritus from L. hyperborea was thus in the form of whole plants or blades and > 60% of that was delivered as a large pulse within 1-2 months in spring. The discrete nature of the delivery suggests that the detritus cannot be retained and consumed locally and that some is exported to adjacent deep areas where it may subsidize secondary production or become buried into deep marine sediments as blue carbon.


Assuntos
Kelp , Carbono , Ecossistema , Florestas , Noruega
6.
Ecol Lett ; 22(11): 1850-1859, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31412432

RESUMO

Most prominent theories of food web dynamics imply the simultaneous action of bottom-up and top-down forces. However, transient bottom-up effects resulting from resource pulses can lead to sequential shifts in the strength of top-down predator effects. We used a large-scale field experiment (32 small islands sampled over 5 years) to probe how the frequency and magnitude of pulsed seaweed inputs drives temporal variation in the top-down effects of lizard predators. Short-term weakening of lizard effects on spiders and plants (the latter via a trophic cascade) were associated with lizard diet shifts, and were more pronounced with larger seaweed inputs. Long-term strengthening of lizard effects was associated with lizard numerical responses and plant fertilisation. Increased pulse frequency reinforced the strengthening of lizard effects on spiders and plants. These results underscore the temporally variable nature of top-down effects and highlight the role of resource pulses in driving this variation.


Assuntos
Lagartos , Alga Marinha , Aranhas , Animais , Cadeia Alimentar , Ilhas , Comportamento Predatório
7.
J Theor Biol ; 451: 19-34, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29723541

RESUMO

We examine the role of the travel time of a predator along a spatial network on predator-prey population interactions, where the predator is able to partially or fully sustain itself on a resource subsidy. The impact of access to food resources on the stability and behaviour of the predator-prey-subsidy system is investigated, with a primary focus on how incorporating travel time changes the dynamics. The population interactions are modelled by a system of delay differential equations, where travel time is incorporated as discrete delay in the network diffusion term in order to model time taken to migrate between spatial regions. The model is motivated by the Arctic ecosystem, where the Arctic fox consumes both hunted lemming and scavenged seal carcass. The fox travels out on sea ice, in addition to quadrennially migrating over substantial distances. We model the spatial predator-prey-subsidy dynamics through a "stepping-stone" approach. We find that a temporal delay alone does not push species into extinction, but rather may stabilize or destabilize coexistence equilibria. We are able to show that delay can stabilize quasi-periodic or chaotic dynamics, and conclude that the incorporation of dispersal delay has a regularizing effect on dynamics, suggesting that dispersal delay can be proposed as a solution to the paradox of enrichment.


Assuntos
Modelos Teóricos , Comportamento Predatório , Animais , Regiões Árticas , Arvicolinae , Raposas , Dinâmica Populacional
8.
J Fish Biol ; 92(2): 399-419, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29235101

RESUMO

Changes in the isotopic composition (δ13 C and δ15 N) in biofilm, macro-invertebrates and resident salmonids were used to characterize temporal dynamics of marine derived nutrients (MDNs) incorporation between stream reaches with and without MDN inputs. Five Atlantic rivers were chosen to represent contrasting MDN subsidies: four rivers with considerable numbers of anadromous fishes; one river with little MDN input. Rainbow smelt Osmerus mordax, alewife Alosa pseudoharengus, sea lamprey Petromyzon marinus and Atlantic salmon Salmo salar, were the primary anadromous species for the sampled rivers. Regardless of the spatial resolution or the pathway of incorporation, annual nutrient pulses from spawning anadromous fishes had a positive effect on isotopic enrichment at all trophic levels (biofilm, 1·2-5·4‰; macro-invertebrates, 0·0-6·8‰; fish, 1·2-2·6‰). Community-wide niche space shifted toward the marine-nutrient source, but the total ecological niche space did not always increase with MDN inputs. The time-integrated marine-nutrient resource contribution to the diet of S. salar parr and brook trout Salvelinus fontinalis ranged between 16·3 and 36·0% during anadromous fish-spawning periods. The high degree of spatio-temporal heterogeneity in marine-nutrient subsidies from anadromous fishes lead to both direct and indirect pathways of MDN incorporation into stream food webs. This suggests that organisms at many trophic levels derive a substantial proportion of their energy from marine resources when present. The current trend of declining anadromous fish populations means fewer nutrient-rich marine subsidies being delivered to rivers, diminishing the ability to sustain elevated riverine productivity.


Assuntos
Migração Animal , Peixes , Cadeia Alimentar , Rios , Animais , Oceano Atlântico , Isótopos de Carbono/análise , Dieta , Invertebrados , Isótopos de Nitrogênio/análise , Salmão , Salmonidae , Truta
9.
J Theor Biol ; 420: 241-258, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28322876

RESUMO

Predator-prey-subsidy dynamics on stepping-stone domains are examined using a variety of network configurations. Our problem is motivated by the interactions between arctic foxes (predator) and lemmings (prey) in the presence of seal carrion (subsidy) provided by polar bears. We use the n-Patch Model, which considers space explicitly as a "Stepping Stone" system. We consider the role that the carrying capacity, predator migration rate, input subsidy rate, predator mortality rate, and proportion of predators surviving migration play in the predator-prey-subsidy population dynamics. We find that for certain types of networks, added mobility will help predator populations, allowing them to survive or coexist when they would otherwise go extinct if confined to one location, while in other situations (such as when sparsely distributed nodes in the network have few resources available) the added mobility will hurt the predator population. We also find that a combination of favourable conditions for the prey and subsidy can lead to the formation of limit cycles (boom and bust dynamic) from stable equilibrium states. These modifications to the dynamics vary depending on the specific network structure employed, highlighting the fact that network structure can strongly influence the predator-prey-subsidy dynamics in stepping-stone domains.


Assuntos
Comportamento Apetitivo , Cadeia Alimentar , Modelos Biológicos , Comportamento Predatório , Migração Animal , Animais , Arvicolinae , Comportamento Alimentar , Raposas , Dinâmica Populacional , Focas Verdadeiras , Ursidae
10.
J Theor Biol ; 396: 163-81, 2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26916622

RESUMO

The role of seasonality on predator-prey interactions in the presence of a resource subsidy is examined using a system of non-autonomous ordinary differential equations (ODEs). The problem is motivated by the Arctic, inhabited by the ecological system of arctic foxes (predator), lemmings (prey), and seal carrion (subsidy). We construct two nonlinear, nonautonomous systems of ODEs named the Primary Model, and the n-Patch Model. The Primary Model considers spatial factors implicitly, and the n-Patch Model considers space explicitly as a "Stepping Stone" system. We establish the boundedness of the dynamics, as well as the necessity of sufficiently nutritional food for the survival of the predator. We investigate the importance of including the resource subsidy explicitly in the model, and the importance of accounting for predator mortality during migration. We find a variety of non-equilibrium dynamics for both systems, obtaining both limit cycles and chaotic oscillations. We were then able to discuss relevant implications for biologically interesting predator-prey systems including subsidy under seasonal effects. Notably, we can observe the extinction or persistence of a species when the corresponding autonomous system might predict the opposite.


Assuntos
Migração Animal , Cadeia Alimentar , Modelos Biológicos , Estações do Ano , Animais , Regiões Árticas , Dinâmica Populacional
11.
Ecol Appl ; 26(6): 1771-1784, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27755696

RESUMO

Mercury (Hg) concentrations in aquatic environments have increased globally, exposing consumers of aquatic organisms to high Hg levels. For both aquatic and terrestrial consumers, exposure to Hg depends on their food sources as well as environmental factors influencing Hg bioavailability. The majority of the research on the transfer of methylmercury (MeHg), a toxic and bioaccumulating form of Hg, between aquatic and terrestrial food webs has focused on terrestrial piscivores. However, a gap exists in our understanding of the factors regulating MeHg bioaccumulation by non-piscivorous terrestrial predators, specifically consumers of adult aquatic insects. Because dissolved organic carbon (DOC) binds tightly to MeHg, affecting its transport and availability in aquatic food webs, we hypothesized that DOC affects MeHg transfer from stream food webs to terrestrial predators feeding on emerging adult insects. We tested this hypothesis by collecting data over 2 years from 10 low-order streams spanning a broad DOC gradient in the Lake Sunapee watershed in New Hampshire, USA. We found that streamwater MeHg concentration increased linearly with DOC concentration. However, streams with the highest DOC concentrations had emerging stream prey and spiders with lower MeHg concentrations than streams with intermediate DOC concentrations; a pattern that is similar to fish and larval aquatic insects. Furthermore, high MeHg concentrations found in spiders show that MeHg transfer in adult aquatic insects is an overlooked but potentially significant pathway of MeHg bioaccumulation in terrestrial food webs. Our results suggest that although MeHg in water increases with DOC, MeHg concentrations in stream and terrestrial consumers did not consistently increase with increases in streamwater MeHg concentrations. In fact, there was a change from a positive to a negative relationship between aqueous exposure and bioaccumulation at streamwater MeHg concentrations associated with DOC above ~5 mg/L. Thus, our study highlights the importance of stream DOC for MeHg dynamics beyond stream boundaries, and shows that factors modulating MeHg bioavailability in aquatic systems can affect the transfer of MeHg to terrestrial predators via aquatic subsidies.


Assuntos
Carbono/química , Insetos/fisiologia , Mercúrio/química , Rios/química , Animais , Concentração de Íons de Hidrogênio , Insetos/química , Aranhas/química , Aranhas/fisiologia , Temperatura
12.
Oecologia ; 180(1): 217-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26410032

RESUMO

Vertebrate consumers can be important drivers of the structure and functioning of ecosystems, including the soil and litter invertebrate communities that drive many ecosystem processes. Burrowing seabirds, as prevalent vertebrate consumers, have the potential to impact consumptive effects via adding marine nutrients to soil (i.e. resource subsidies) and non-consumptive effects via soil disturbance associated with excavating burrows (i.e. ecosystem engineering). However, the exact mechanisms by which they influence invertebrates are poorly understood. We examined how soil chemistry and plant and invertebrate communities changed across a gradient of seabird burrow density on two islands in northern New Zealand. Increasing seabird burrow density was associated with increased soil nutrient availability and changes in plant community structure and the abundance of nearly all the measured invertebrate groups. Increasing seabird densities had a negative effect on invertebrates that were strongly influenced by soil-surface litter, a positive effect on fungal-feeding invertebrates, and variable effects on invertebrate groups with diverse feeding strategies. Gastropoda and Araneae species richness and composition were also influenced by seabird activity. Generalized multilevel path analysis revealed that invertebrate responses were strongly driven by seabird engineering effects, via increased soil disturbance, reduced soil-surface litter, and changes in trophic interactions. Almost no significant effects of resource subsidies were detected. Our results show that seabirds, and in particular their non-consumptive effects, were significant drivers of invertebrate food web structure. Reductions in seabird populations, due to predation and human activity, may therefore have far-reaching consequences for the functioning of these ecosystems.


Assuntos
Aves , Ecossistema , Comportamento Alimentar , Invertebrados , Plantas , Comportamento Predatório , Solo/química , Animais , Cadeia Alimentar , Ilhas , Nova Zelândia , Dinâmica Populacional
13.
Ecol Evol ; 12(12): e9696, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590342

RESUMO

As a spatial subsidy, which is the phenomenon of transferring resources from a donor system to a recipient system, anadromous salmonids contribute to the supply of marine-derived nutrients to freshwater and terrestrial systems. Live salmon and salmon carcasses and eggs are utilized by various organisms and affect their abundance and distribution. However, the evaluation of the effect of salmon subsidies on the abundance and distribution of terrestrial animals is biased toward predators or scavengers that utilize spawning adults and carcasses, and few studies have focused on the effect of salmon eggs as a subsidy. To avoid underestimating the function of salmon subsidies, the response to the availability of salmon eggs in various systems should be investigated. Here, we investigated the abundance and feeding behavior of the brown dipper Cinclus pallasii, as a consumer of salmon eggs, based on the hypothesis that the availability of salmon eggs affects the diet composition and stream distribution of this small predator. In addition, to test whether changes in the abundance of brown dippers are determined by salmon spawning, their abundance was compared upstream and downstream of the check dams in three streams during the peak spawning period. Brown dippers used salmon eggs during the spawning season (53.7% of diet composition), and their abundance increased as the number of spawning redds increased. In contrast, this pattern was not observed upstream of the check dam. These results suggested that the abundance and stream distribution of brown dippers vary according to the variation in the spatiotemporal availability of salmon eggs.

14.
Ecol Evol ; 12(12): e9620, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514545

RESUMO

Terrestrial resource pulses can significantly affect the community dynamics of freshwater ecosystems. Previously, its effect on the river community is considered to be stronger in summer, whereas weaker in winter when terrestrial invertebrates are less abundant. The movement of the terrestrial earthworms is triggered in winter, so they may be supplied to winter rivers as terrestrial resource pulse, but little is known about it. Here, we report that the massive numbers of the terrestrial earthworms were supplied intensively to an upstream of the small river in early winter. In particular, we found large numbers of megascolecid earthworms were supplied in an upstream of the small river in Northern Japan. Furthermore, we observed that supplied earthworms were consumed by salmonid fish species (masu salmon, white spotted char and rainbow trout) and aquatic invertebrates (gammarid amphipod, planarian flatworm, and stonefly larvae). These findings suggest that the terrestrial earthworms may play a key role in ecosystem functioning in winter when severe and other resources are scarce.

15.
Ecol Evol ; 11(4): 1586-1597, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613991

RESUMO

Anthropogenic activities often create distinctive but discontinuously distributed habitat patches with abundant food but high risk of predation. Such sites can be most effectively utilized by individuals with specific behaviors and morphologies. Thus, a widespread species that contains a diversity of sizes and behavioral types may be pre-adapted to exploiting such hotspots. In eastern Australia, the giant (to >2 m) lizard Varanus varius (lace monitor) utilizes both disturbed (campground) and undisturbed (bushland) habitats. Our surveys of 27 sites show that lizards found in campgrounds tended to be larger and bolder than those in adjacent bushland. This divergence became even more marked after the arrival of a toxic invasive species (the cane toad, Rhinella marina) caused high mortality in larger and bolder lizards. Some of the behavioral divergences between campground and bushland lizards may be secondary consequences of differences in body size, but other habitat-associated divergences in behavior are due to habituation and/or nonrandom mortality.

16.
Ecology ; 102(9): e03450, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165784

RESUMO

Ecosystems are defined, studied, and managed according to boundaries constructed to conceptualize patterns of interest at a certain scale and scope. The distinction between ecosystems becomes obscured when resources from multiple origins cross porous boundaries and are assimilated into food webs through repeated trophic transfers. Ecosystem compartments can define bounded localities in a heterogeneous landscape that simultaneously retain and exchange energy in the form of organic matter. Here we developed and tested a framework to quantify reciprocal reliance on cross-boundary resource exchange and calculate the contribution of primary production from adjacent ecosystem compartments cycling through food webs to support consumers at different trophic levels. Under this framework, an integrated ecosystem can be measured and designated when the boundary between spatially distinct compartments is permeable and the bidirectional exchange of resources contributes significantly to sustaining both food webs. Using a desert river and riparian zone as a case study, we demonstrate that resources exchanged across the aquatic-riparian boundary cycle through multiple trophic levels. Furthermore, predators on both sides of the boundary were supported by externally produced resources to a similar extent, indicating this is a tightly integrated river-riparian ecosystem and that changes to either compartment will substantially impact the other. Using published data on lake ecosystems, we demonstrated that benthic and pelagic ecosystem compartments are likely not fully integrated, but differences between lakes could be used to test ecological hypotheses. Finally, we discuss how the integrated ecosystem framework could be applied in urban-preserve and field-forest ecosystems to address a broad range of ecological concepts. Because few systems function in complete isolation, this novel approach has application to research and management strategies globally as ecosystems continue to face novel pressures that precipitate cascading ecological repercussions well beyond a bounded system of focus.


Assuntos
Ecossistema , Cadeia Alimentar
17.
Ecology ; 101(8): e03064, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32274791

RESUMO

Networks of direct and indirect biotic interactions underpin the complex dynamics and stability of ecological systems, yet experimental and theoretical studies often yield conflicting evidence regarding the direction (positive or negative) or magnitude of these interactions. We revisited pioneering data sets collected at the deciduous forested Horonai Stream and conducted ecosystem-level syntheses to demonstrate that the direction of direct and indirect interactions can change depending on the timescale of observation. Prior experimental studies showed that terrestrial prey that enter the stream from the adjacent forest caused positive indirect effects on aquatic invertebrates during summer by diverting fish consumption. Seasonal and annual estimates of secondary production and organic matter flows along food web pathways demonstrate that this seasonal input of terrestrial invertebrate prey increases production of certain fish species, reversing the indirect effect on aquatic invertebrates from positive at the seasonal timescale to negative at the annual timescale. Even though terrestrial invertebrate prey contributed 54% of the annual organic matter flux to fishes, primarily during summer, fish still consumed 98% of the aquatic invertebrate annual production, leading to top-down control that is not revealed in short-term experiments and demonstrating that aquatic prey may be a limiting resource for fishes. Changes in the direction or magnitude of interactions may be a key factor creating nonlinear or stabilizing feedbacks in complex systems, and these dynamics can be revealed by merging experimental and comparative approaches at different scales.


Assuntos
Ecossistema , Rios , Animais , Cadeia Alimentar , Florestas , Invertebrados
18.
Ecology ; 101(10): e03126, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32602173

RESUMO

The roles mobile animals and abiotic processes play as vectors for resource transfers between ecosystems ("subsidies") are well studied, but the idea that resources from animals with limited mobility may be transported across boundaries through intermediate taxa remains unexplored. Aquatic plants ("macrophytes") are globally distributed and may mediate transfers of aquatic-derived nutrients from aggregations of aquatic animals to terrestrial ecosystems when consumed by terrestrial herbivores. We used mesocosms (94 × 44 cm) to test whether aquatic animal-generated biogeochemical hotspots increase growth and nutrient content in macrophytes using the macrophyte Justicia americana and freshwater mussels. Justicia americana biomass production increased and belowground biomass allocation changed with increasing mussel density. At high mussel density, water-column phosphorus increased and carbon:phosphorus ratios in J. americana tissues decreased. We deployed motion-sensing cameras to explore herbivory on J. americana growing along the margins of the Kiamichi River, Oklahoma, and documented feeding by large mammals (Odocoileus virginianus, Sus scrofa, and Bos taurus). Thus, biogeochemical hotspots generated by aquatic animal aggregations can promote macrophyte production that subsequently is transferred to terrestrial animals. More broadly, this suggests that reductions in aquatic animal biomass may have bottom-up impacts that indirectly affect terrestrial ecosystems via plant-animal interactions bridging ecosystem boundaries.


Assuntos
Cervos , Ecossistema , Animais , Biomassa , Bovinos , Água Doce , Herbivoria , Plantas
19.
Sci Total Environ ; 622-623: 49-56, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29202368

RESUMO

Litterfall is an important resource subsidy for lake ecosystems that primarily accumulates in littoral zones. Bivalves are abundant within littoral zones and may modify the effects of terrestrial resource subsidies through trophic interactions and engineering their surrounding habitat. Leaf inputs to lakes and freshwater mussel abundances are changing throughout the boreal ecoregion so we set out to investigate how the co-occurring benthic community might respond. We set up an in situ mesocosm experiment in Ramsey Lake, Sudbury, ON, Canada. Mesocosms contained sediments of either 5% or 35% terrestrial organic matter (tOM), into which we placed mussels (Elliptio complanata) at differing densities (0, 0.4 and 2musselsm-2, with a sham mussel treatment at 0.4musselsm-2). Over one month we recorded the sediment chemistry (dissolved organic carbon, nitrogen and phosphorus), littoral organisms (benthic algae and zooplankton) and mussel growth. At high mussel densities we recorded a 90%, 80%, 45% and 40% reduction in phosphorus, dissolved organic carbon, nitrogen and benthic diatoms, respectively, whereas at low mussel densities we observed a 3-fold increase in zooplankton. We discuss that these results were caused by a combination of bioturbation and trophic interactions. Benthic diatom concentrations were also reduced by 20% in sediments of 35% tOM, likely due to shading and competition with bacteria. Mussel growth increased at high mussel densities but was offset at high tOM, likely due to the organic matter interfering with filter feeding. Our results suggest that mussels can alter the geochemical composition of sediments and abundances of associated littoral organisms, in some cases regardless of tOM quantity. Therefore, the dominant top-down control exerted by freshwater mussels may outweigh bottom-up effects of tOM additions. Generally, our study reveals the importance of considering dominant species when studying the effects of cross-ecosystem resource fluxes.


Assuntos
Bivalves/crescimento & desenvolvimento , Cadeia Alimentar , Lagos , Animais , Canadá , Diatomáceas , Zooplâncton
20.
Artigo em Inglês | MEDLINE | ID: mdl-30348866

RESUMO

Trophic rewilding maintains that large mammals are functionally important to resource subsidies and nutrient repletion, yet this prediction is understudied. Here, I report on the potential magnitude and variability of nitrogen that moose populations move from aquatic to terrestrial ecosystems. My aim is to provide justified approximations of the role of moose in the flux of a limiting nutrient across ecotones and to illustrate how this role is linked to wolf predation and climate warming. Using Isle Royale and northeastern Minnesota, USA as contrasting focal systems, I found that the long-term annual N gain for riparian forests likely ranges from 1 to 10 kg N ha-1 yr-1, depending on the heterogeneity of moose movements. For these systems, this range is equivalent to approximately 4-30% of net annual N mineralization, approximately 62-625% of annual N runoff, approximately 28-333% of annual atmospheric N deposition and approximately 31-312% of the N sequestered by trees. The N flux approximation is most sensitive to moose population levels and, as such, is influenced by wolves, climate warming and disease. The potential for other terrestrial ungulates that feed on aquatic plants to provide significant nutrient repletion across ecotones is unknown but important to examine in the context of trophic rewilding. The extent to which predators influence ungulate abundance indirectly impacts this nutrient repletion.This article is part of the theme issue 'Trophic rewilding: consequences for ecosystems under global change'.


Assuntos
Conservação dos Recursos Naturais , Cervos/fisiologia , Florestas , Herbivoria , Ciclo do Nitrogênio , Distribuição Animal , Animais , Mudança Climática , Cadeia Alimentar , Michigan , Minnesota , Nutrientes/análise , Lobos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA