Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Yeast ; 41(7): 437-447, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850070

RESUMO

Four yeast isolates were obtained from rotting wood and galleries of passalid beetles collected in different sites of the Brazilian Amazonian Rainforest in Brazil. This yeast produces unconjugated allantoid asci each with a single elongated ascospore with curved ends. Sequence analysis of the internal transcribed spacer-5.8 S region and the D1/D2 domains of the large subunit ribosomal RNA (rRNA) gene showed that the isolates represent a novel species of the genus Spathaspora. The novel species is phylogenetically related to a subclade containing Spathaspora arborariae and Spathaspora suhii. Phylogenomic analysis based on 1884 single-copy orthologs for a set of Spathaspora species whose whole genome sequences are available confirmed that the novel species represented by strain UFMG-CM-Y285 is phylogenetically close to Sp. arborariae. The name Spathaspora marinasilvae sp. nov. is proposed to accommodate the novel species. The holotype of Sp. marinasilvae is CBS 13467 T (MycoBank 852799). The novel species was able to accumulate xylitol and produce ethanol from d-xylose, a trait of biotechnological interest common to several species of the genus Spathaspora.


Assuntos
Besouros , Filogenia , Floresta Úmida , Saccharomycetales , Madeira , Xilose , Animais , Madeira/microbiologia , Besouros/microbiologia , Brasil , Saccharomycetales/genética , Saccharomycetales/classificação , Saccharomycetales/isolamento & purificação , Saccharomycetales/metabolismo , Xilose/metabolismo , Fermentação , DNA Fúngico/genética , Análise de Sequência de DNA
2.
Artigo em Inglês | MEDLINE | ID: mdl-38190334

RESUMO

Two yeast strains (NYNU 211162 and NYNU 211275) were isolated from rotting wood collected in the Baotianman Nature Reserve, Henan Province, central China. Phylogenetic analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region revealed that the strains represent a phylogenetically distinct species within the genus Spencermartinsiella. The name Spencermartinsiella henanensis fa., sp. nov. is proposed for this species with holotype CICC 33543T (Mycobank MB 851142). S. henanensis sp. nov. differed by only 3 nt (~0.5 %) substitutions from the closest known species S. europaea NCAIM Y.01817T in the D1/D2 domain, but by 33 nt (~6 %) substitutions, 34 nt (~3.8 %) substitutions, 30 nt (~5.6 %) substitutions and 75 nt (~9.9 %) substitutions in the ITS region and the partial TEF1, COXII and RPB2 genes. Additionally, S. henanensis sp. nov. can be physiologically distinguished from S. europaea by its ability to assimilate inulin, inability to assimilate ethylamine and cadaverine, and incapability of growth at 30 °C.


Assuntos
Saccharomycetales , Madeira , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Saccharomycetales/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38359077

RESUMO

Three yeast isolate candidates for a novel species were obtained from rotting wood samples collected in Brazil and Colombia. The Brazilian isolate differs from the Colombian isolates by one nucleotide substitution in each of the D1/D2 and small subunit (SSU) sequences. The internal transcribed spacer (ITS) and translation elongation factor 1-α gene sequences of the three isolates were identical. A phylogenetic analysis showed that this novel species belongs to the genus Ogataea. This novel species is phylogenetically related to Candida nanaspora and Candida nitratophila. The novel species differs from C. nanaspora by seven nucleotides and two indels, and by 17 nucleotides and four indels from C. nitratophila in the D1/D2 sequences. The ITS sequences of these three species differ by more than 30 nucleotides. Analyses of the sequences of the SSU and translation elongation factor 1-α gene also showed that these isolates represent a novel species of the genus Ogataea. Different from most Ogataea species, these isolates did not assimilate methanol as the sole carbon source. The name Ogataea nonmethanolica sp. nov. is proposed to accommodate these isolates. The holotype of Ogataea nonmethanolica is CBS 13485T. The MycoBank number is MB 851195.


Assuntos
Fator 1 de Elongação de Peptídeos , Saccharomycetales , Fator 1 de Elongação de Peptídeos/genética , Brasil , Filogenia , Colômbia , DNA Espaçador Ribossômico/genética , Madeira , RNA Ribossômico 16S/genética , DNA Fúngico/genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Saccharomycetales/genética , Nucleotídeos
4.
Yeast ; 40(2): 84-101, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36582015

RESUMO

This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d-xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species.


Assuntos
Saccharum , Madeira , Celulose , Floresta Úmida , Brasil , Filogenia , Leveduras
5.
Artigo em Inglês | MEDLINE | ID: mdl-37486335

RESUMO

Two apiculate strains (NYNU 181072 and NYNU 181083) of a bipolar budding yeast species were isolated from rotting wood samples collected in Xishuangbanna Tropical Rainforest in Yunnan Province, southwest PR China. On the basis of phenotypic characteristics and the results of phylogenetic analysis of the D1/D2 domain of the large subunit (LSU) rRNA, internal transcribed spacer (ITS) region and the actin (ACT1) gene, the two strains were found to represent a single novel species of the genus Hanseniaspora, for which the name Hanseniaspora menglaensis f.a., sp. nov. (holotype CICC 33364T; MycoBank MB 847437) is proposed. In the phylogenetic tree, H. menglaensis sp. nov. showed a close relationship with Hanseniaspora lindneri, Hanseniaspora mollemarum, Hanseniaspora smithiae and Hanseniaspora valbyensis. H. menglaensis sp. nov. differed from H. lindneri, the most closely related known species, by 1.2 % substitutions in the D1/D2 domain, 2.5 % substitutions in the ITS region and 5.4 % substitutions in the ACT1 gene, respectively. Physiologically, H. menglaensis sp. nov. can also be distinguished from H. lindneri by its ability to assimilate d-gluconate.


Assuntos
Hanseniaspora , Saccharomycetales , Hanseniaspora/genética , Filogenia , Madeira , China , DNA Fúngico/genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA , DNA Espaçador Ribossômico/genética , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-36884373

RESUMO

Four isolates of Spathaspora species were recovered from rotting wood collected in two Brazilian Amazonian biomes. The isolates produced unconjugated allantoid asci with a single elongated ascospore with curved ends. Sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent two different novel Spathaspora species, phylogenetically related to Sp. boniae. Two isolates were obtained from rotting wood collected in two different sites of the Amazonian forest in the state of Pará. The name Spathaspora brunopereirae sp. nov. is proposed to accommodate these isolates. The holotype of Spathaspora brunopereirae sp. nov. is CBS 16119T (MycoBank MB846672). The other two isolates were obtained from a region of transition between the Amazonian forest and the Cerrado ecosystem in the state of Tocantins. The name Spathaspora domphillipsii sp. nov. is proposed for this novel species. The holotype of Spathaspora domphillipsii sp. nov. is CBS 14229T (MycoBank MB846697). Both species are able to convert d-xylose into ethanol and xylitol, a trait with biotechnological applications.


Assuntos
Saccharomycetales , Xilose , Ecossistema , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Saccharomycetales/genética , Leveduras/genética , Florestas , Madeira , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética
7.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748467

RESUMO

Two strains of a novel ascomycetous yeast species were isolated from rotting wood samples collected in Jiuxi Mountain Forest Park in Yunnan Province, southwest China. Both strains formed one or two spherical ascospores in persistent asci. Phylogenetic analysis of the concatenated sequences of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) and the D1/D2 domain of the large subunit rRNA gene revealed that the novel strains represented a phylogenetically distinct species belonging to the genus Torulaspora. This novel species differed from the type strains of the closest known species, Torulaspora nypae and Torulaspora maleeae, by 0.9 and 1.2 % nucleotide substitutions in the D1/D2 domain and 5.3 and 6 % nucleotide substitutions in the ITS region, respectively. The novel species can also be distinguished from T. nypae and T. maleeae in terms of the ability to assimilate ribitol, succinate and citrate, and its ability to grow at 37 °C. The species name of Torulaspora jiuxiensis sp. nov. is proposed with holotype CBS 16004T (Mycobank MB 844535).


Assuntos
Ascomicetos , Saccharomycetales , Torulaspora , Madeira , Filogenia , DNA Espaçador Ribossômico/genética , China , DNA Fúngico/genética , Análise de Sequência de DNA , Técnicas de Tipagem Micológica , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Ascomicetos/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-34494946

RESUMO

Six yeast isolates were obtained from rotting wood samples in Brazil and frass of a cerambycid beetle larva in French Guiana. Sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent a novel species of Cyberlindnera. This novel species is related to Cyberlindnera japonica, Cyberlindnera xylosilytica, Candida easanensis and Candida maesa. It is heterothallic and produces asci with two or four hat-shaped ascospores. The name Cyberlindnera dasilvae sp. nov. is proposed to accommodate the novel species. The holotype of Cy. dasilvae is CBS 16129T and the designated paratype is CBS 16584. The MycoBank number is 838252. All isolates of Cy. dasilvae were able to convert xylose into xylitol with maximum xylitol production within 60 and 72 h. The isolates produced xylitol with values ranging from 12.61 to 31.79 g l-1 in yeast extract-peptone-xylose medium with 5% xylose. When the isolates were tested in sugarcane bagasse hydrolysate containing around 35-38 g l-1d-xylose, isolate UFMG-CM-Y519 showed maximum xylitol production.


Assuntos
Besouros/microbiologia , Filogenia , Saccharomycetales/classificação , Madeira , Xilitol , Animais , DNA Fúngico/genética , DNA Espaçador Ribossômico , Fezes/microbiologia , Larva/microbiologia , Técnicas de Tipagem Micológica , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA , Madeira/microbiologia , Xilitol/metabolismo
9.
Int J Syst Evol Microbiol ; 70(7): 4378-4383, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32584748

RESUMO

Four isolates of two novel ascosporogenous species belonging to the clade Starmera were obtained from cactus tissues and rotting wood in Brazil. Results of analyses of the sequences of the ITS and D1/D2 domains of the large subunit rRNA gene indicated that the two isolates of the cactophilic species are related to Starmera caribaea and Starmera pilosocereana, yeasts that are associated with cacti and require an organic source of sulfur for growth. We propose the novel species Starmera foglemanii sp. nov. (CBS 16113T; MycoBank number: MB 834400) to accommodate these isolates. The other two isolates are phylogenetically related to Candida dendrica, Candida laemsonensis and Candida berthetii, also in the Starmera clade. The novel species name Starmera ilhagrandensis sp. nov. (CBS 16316T; MycoBank number: MB 834402) is proposed for this species.


Assuntos
Cactaceae/microbiologia , Filogenia , Saccharomycetales/classificação , Madeira/microbiologia , Brasil , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
10.
Int J Syst Evol Microbiol ; 69(9): 2658-2661, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31162007

RESUMO

Three strains of a novel yeast species were isolated from rotting wood in the Xishuangbanna Tropical Rainforest, Yunnan Province, PR China. Sequence analysis of the D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions showed that the novel species represents a member of the genus Saturnispora. It differed from its closest known species, Saturnispora sekii CBS 10931T, by 1.3 % nucleotide substitutions in the D1/D2 domains and by 2.2 % nucleotide substitutions in the ITS regions, respectively. In contrast to Saturnispora sekii, the novel yeast species was unable to assimilate glycerol, dl-lactate, succinate and citrate, and grow at 37 °C. The name Saturnispora galanensis sp. nov. is proposed to accommodate these strains, with NYNU 1797 as the holotype.


Assuntos
Filogenia , Floresta Úmida , Saccharomycetales/classificação , Madeira/microbiologia , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
11.
Int J Syst Evol Microbiol ; 69(11): 3623-3628, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31433292

RESUMO

Five yeast strains were isolated from rotting wood samples collected in the Xishuangbanna Tropical Rainforest, Yunnan Province, PR China. Phylogenetic analysis of the D1/D2 domains of the large subunit rRNA gene indicated that these strains represent two novel species of the genus Kazachstania. Kazachstania jinghongensis sp. nov. produces one to two spherical ascospores per ascus, and is most closely related to Kazachstania lodderae and Kazachstania spencerorum. Kazachstania jinghongensis sp. nov. differed from the type strains of the two latter species by 13-24 substitutions in the D1/D2 domains and by 39-56 substitutions in the ITS regions. Kazachstania menglunensis f.a., sp. nov. is a member of the Kazachstania jiainica subclade, but the formation of ascospores was not observed on various sporulation media. Kazachstania menglunensis sp. nov. differed from other members of the subclade by 23-26 substitutions in the D1/D2 domains and by more than 67 substitutions in the ITS regions. The holotype of Kazachstania jinghongensis sp. nov. is NYNU 17944 (CBS 15232) and the holotype of Kazachstania menglunensis sp. nov. is NYNU 18913 (CBS 16054).


Assuntos
Filogenia , Floresta Úmida , Saccharomycetales/classificação , Madeira/microbiologia , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA , Esporos Fúngicos
12.
Int J Syst Evol Microbiol ; 69(5): 1504-1508, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30856091

RESUMO

Twelve strains of a novel yeast species were isolated from rotting wood, mushrooms and fruit samples in Brazil and French Guiana. Analysis of the sequences of the internal transcribed spacer region and the D1/D2 domains of the large subunit rRNA gene showed that the novel species belongs to the Kurtzmaniella clade. The novel species differed from its closest relative, Candida natalensis, by 12 substitutions in the D1/D2 sequences. The novel species could be distinguished from C. natalensis by its inability to assimilate cellobiose and salicin, and growth at 50 % (w/w) glucose. The name Kurtzmaniella hittingeri f.a., sp. nov. is proposed for the novel species. The type strain of K. hittingeri sp. nov. is CBS 13469T (=UFMG CM-Y272T). The MycoBank number is 827183. We also propose the transfer of Candida fragi, Candida quercitrusa and Candida natalensis to the genus Kurtzmaniella as new combinations.


Assuntos
Candida/classificação , Frutas/microbiologia , Filogenia , Madeira/microbiologia , Álcoois Benzílicos , Brasil , Candida/isolamento & purificação , Celobiose , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Guiana Francesa , Glucosídeos , Técnicas de Tipagem Micológica , Análise de Sequência de DNA
13.
Int J Syst Evol Microbiol ; 68(10): 3307-3310, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30156533

RESUMO

Three strains representing a novel yeast species, Sugiyamaella xiaguanensis f.a., sp. nov. (type strain NYNU 161041T=CICC 33167T=CBS 14696T), were isolated from rotting wood samples collected in Henan and Yunnan Provinces, PR China. The novel species is able to assimilate cellobiose, salicin and d-xylose, which was typical of the species of the genus Sugiyamaella. Analysis of the D1/D2 domains of the large subunit rRNA gene and internal transcribed spacer regions of these strains showed that this species was related to Sugiyamaella lignohabitans and Sugiyamaella marionensis, its closest relatives. Su. xiaguanensis sp. nov. differed by 1.4 % nucleotide substitutions from Su. lignohabitans, and by 1.9 % nucleotide substitutions from Su. marionensis in the D1/D2 sequences. The ITS sequences of Su. xiaguanensis sp. nov. displayed more than 6.5 % nucleotide substitutions from the latter two species, showing that it is a genetically separate species.


Assuntos
Filogenia , Saccharomycetales/classificação , Madeira/microbiologia , Composição de Bases , Álcoois Benzílicos , Celobiose , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Glucosídeos , Técnicas de Tipagem Micológica , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA , Xilose
14.
Int J Syst Evol Microbiol ; 68(10): 3311-3315, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30152749

RESUMO

Four yeast strains were isolated from rotting wood samples collected in the Baotianman Nature Reserve in Henan Province, Central China. On the basis of sequence analysis of the D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer regions, they were suggested to be two novel species of the genus Pichia. Pichia nanzhaoensis sp. nov. produces one to four spherical ascospores per ascus, and is most closely related to Candida pseudolambica. Pichia paraexigua f.a., sp. nov. is a sister taxa to Pichia exigua, but the formation of ascospores was not observed on various sporulation media. P. nanzhaoensis sp. nov. can weakly assimilate inulin, whereas P. paraexigua sp. nov. can weakly assimilate d-glucosamine. The type strain of Pichia nanzhaoensis is NYNU 178136T (=CICC 33279T=CBS 15346T) and the type strain of Pichia paraexigua is NYNU 178135T (=CICC 33278T=CBS 15237T).


Assuntos
Filogenia , Pichia/classificação , Madeira/microbiologia , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Pichia/genética , Pichia/isolamento & purificação , Análise de Sequência de DNA , Esporos Fúngicos
15.
Antonie Van Leeuwenhoek ; 111(4): 525-531, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29124467

RESUMO

Two strains of a novel yeast species were isolated from rotting wood of an ornamental tree (purple quaresmeira, Tibouchina granulosa, Melastomataceae) in an Atlantic Rainforest area in Brazil. Analysis of the sequences of the internal transcribed spacer (ITS-5.8S) region and the D1/D2 domains of the large subunit rRNA gene showed that this species belongs to the Spathaspora clade, and is phylogenetically related to Spathaspora brasiliensis, Candida materiae and Sp. girioi. The novel species ferments D-xylose, producing ethanol, with amounts between 3.37 and 3.48 g L-1 ethanol from 2% D-xylose. Ascospores were not observed from this new species. The name Spathaspora piracicabensis f. a., sp. nov. is proposed to accommodate these isolates. The type strain is UFMG-CM-Y5867T (= CBS 15054T = ESALQ-I54T). The MycoBank number is MB 822,320.


Assuntos
Filogenia , Saccharomycetales/classificação , Madeira/microbiologia , Brasil , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Fermentação , Floresta Úmida , Saccharomycetales/metabolismo , Especificidade da Espécie , Xilose/metabolismo
16.
Int J Syst Evol Microbiol ; 67(12): 5051-5055, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29022555

RESUMO

Three strains representing a novel species of yeast were isolated from samples of rotting wood collected from Xishuangbanna Tropical Rainforest in Yunnan Province, PR China. Phylogenetic analysis based on the concatenated sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) rRNA gene revealed that the novel species is a member of the genus Cyberlindnera, although the formation of ascospores was not observed. The novel species was related most closely to the type strain of the species Candida pattaniensis, but they had a 0.5 % sequence divergence (3 substitutions, 0 gap) in the D1/D2 domain and a 5.4 % sequence divergence (21 substitutions, 10 gaps) in the ITS region. The novel species could also be differentiated from the closely related species by some biochemical and physiological characteristics. The species name Cyberlindnera xishuangbannaensis f.a., sp. nov. is proposed to accommodate these strains, with NYNU 16752T (=CICC 33163T=CBS 14692T) designated as the type strain. The MycoBank number is MB 822199.


Assuntos
Filogenia , Saccharomycetales/classificação , Madeira/microbiologia , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Floresta Úmida , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
17.
MycoKeys ; 83: 69-84, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539207

RESUMO

Yamadazyma is one of the largest genera in the family Debaryomycetaceae (Saccharomycetales, Saccharomycetes) with species mainly found in rotting wood, insects and their resulting frass, but also recovered from flowers, leaves, fruits, tree bark, mushrooms, sea water, minerals, and the atmosphere. In the present study, several strains obtained from rotting wood in Henan and Yunnan Provinces of China were isolated. Based on morphology and a molecular phylogeny of the rDNA internal transcribed spacer region (ITS) and the D1/D2 domain of the large subunit (LSU) rDNA, these strains were identified as three new species: Yamadazymaluoyangensis, Y.ovata and Y.paraaseri; and three previously described species, Y.insectorum, Y.akitaensis, and Y.olivae. The three new species are illustrated and their morphology and phylogenetic relationships with other Yamadazyma species are discussed. Our results indicate a high undiscovered diversity of Yamadazyma spp. inhabiting rotting wood in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA