RESUMO
Platinum group metal (PGM)-free M-N-C catalysts have exhibited dramatic electrocatalytic performance and are considered the most promising candidate of the Pt catalysts in oxygen reduction reaction (ORR). However, the electrocatalytic performance of the M-N-C catalysts is still limited by their inferior intrinsic activity and finite active site density. Regulating the coordination environment and increasing the pore structure of the catalyst is an effective strategy to enhance the electrocatalytic performance of the M-N-C catalysts. In this work, the coordination environment and pore structure exquisitely regulated Fe-N-C catalyst exhibit excellent ORR activity and durability. With the enhanced intrinsic activity and increased active site density, the optimized Fe-N/S-C catalyst shows impressive ORR activity (E1/2 = 0.904 V vs reversible hydrogen electrode (RHE)) and superior long-term durability in an alkaline medium. As the advanced physical characterization and theoretical chemistry methods illustrate, the S-modified Fe-Nx (Fe-N3 /S-C) moiety is confirmed as the improved active center for ORR, and the increased active site density further improved ORR efficiency. Based on the Fe-N/S-C cathode, a Zn-air battery is fabricated and shows superior power density (315.4 mW cm-2 ) and long-term discharge stability at 20 mA cm-2 . This work would open a new perspective to design atomically dispersed iron-metal site catalysts for advanced electro-catalysis.
RESUMO
The high-throughput scalable production of low-cost and high-performance electrode materials that work well under high power densities required in industrial application is full of challenges for the large-scale implementation of electrochemical technologies. Here, motivated by theoretical calculation that Mo-S-C heterojunction and sulfur vacancies can reduce the energy band gap, decrease the migration energy barrier, and improve the mechanical stability of MoS2 , the scalable preparation of inexpensive MoS2-x @CN is contrived by employing natural molybdenite as precursor, which is characteristic of high efficiency in synthesis process and energy conservation and the calculated costs are four orders of magnitude lower than MoS2 /C in previous work. More importantly, MoS2- x @CN electrode is endowed with impressive rate capability even at 5 A g-1 , and ultrastable cycling stability during almost 5000 cycles, which far outperform chemosynthesis MoS2 materials. Obtaining the full SIC cell assembled by MoS2- x @CN anode and carbon cathode, the energy/power output is high up to 265.3 W h kg-1 at 250 W kg-1 . These advantages indicate the huge potentials of the designed MoS2- x @CN and of mineral-based cost-effective and abundant resources as anode materials in high-performance AICs.
RESUMO
A novel three-dimensional (3D) porous nitrogen-sulfur co-doped carbon (N-S-C) mesh was synthesized and used for the first time as the quenching material to construct a fluorescent aptasensor for ochratoxin A (OTA) detection. The fluorescent aptasensor with enzyme-free signal amplification strategy was developed by using cDNA as a promoter to trigger hybridization chain reaction (HCR), which effectively improved the sensitivity of this aptasensor. In the absence of OTA, 3D porous N-S-C mesh can adsorb carboxyfluorescein FAM-labeled hairpin DNA1 (H1-FAM) and hairpin DNA2 (H2) and quench the fluorescence of FAM. In the presence of the OTA, the OTA specifically binds to the aptamer strand and the DNA duplex undergoes dissociation. The released cDNA in turn serves as a promoter for HCR, and the strand assembly of H1-FAM and H2 is triggered by the promoter to generate long-strand DNA polymers via HCR, resulting in an increasing fluorescent signal. Under optimal conditions, there was a good linear relationship between lgCOTA and fluorescence intensity difference in the range 0.01-500 ng/mL (R2 = 0.993), and the detection limit was 2.7 pg/mL. The designed sensor platform was applied to determine spiked OTA in peanut, wheat flour, corn flour, black tea, and wine with recoveries in the range of 94.4-119.6%.
Assuntos
Aptâmeros de Nucleotídeos , Carbono , DNA Complementar , Nitrogênio , Porosidade , Farinha , Triticum , DNA , CorantesRESUMO
BACKGROUND AND AIMS: The surface area of mesophyll cells (Smes) and chloroplasts (Sc) facing the intercellular airspace (IAS) are important parameters for estimating photosynthetic activity from leaf anatomy. Although Smes and Sc are estimated based on the shape assumption of mesophyll cells (MCs), it is questionable if the assumption is correct for rice MCs with concave-convex surfaces. Therefore, in this study, we establish a reconstruction method for the 3-D representation of the IAS in rice leaf tissue to calculate the actual Smes and Sc with 3-D images and to determine the correct shape assumption for the estimation of Smes and Sc based on 2-D section images. METHODS: We used serial section light microscopy to reconstruct 3-D representations of the IAS, MCs and chloroplasts in rice leaf tissue. Actual Smes and Sc values obtained from the 3-D representation were compared with those estimated from the 2-D images to find the correct shape-specific assumption (oblate or prolate spheroid) in different orientations (longitudinal and transverse sections) using the same leaf sample. KEY RESULTS: The 3-D representation method revealed that volumes of the IAS and MCs accounted for 30 and 70 % of rice leaf tissue excluding epidermis, respectively, and the volume of chloroplasts accounted for 44 % of MCs. The shape-specific assumption on the sectioning orientation affected the estimation of Smes and Sc using 2-D section images with discrepancies of 10-38 %. CONCLUSIONS: The 3-D representation of rice leaf tissue was successfully reconstructed using serial section light microscopy and suggested that estimation of Smes and Sc of the rice leaf is more accurate using longitudinal sections with MCs assumed as oblate spheroids than using transverse sections with MCs as prolate spheroids.
Assuntos
Oryza , Fosmet , Células do Mesofilo , Folhas de Planta/anatomia & histologia , Cloroplastos , Fotossíntese , Dióxido de CarbonoRESUMO
The magnitude of change following strength and conditioning (S&C) training can be evaluated comparing effect sizes to thresholds. This study conducted a series of meta-analyses and compiled results to identify thresholds specific to S&C, and create prior distributions for Bayesian updating. Pre- and post-training data from S&C interventions were translated into standardised mean difference (SMDpre) and percentage improvement (%Improve) effect sizes. Bayesian hierarchical meta-analysis models were conducted to compare effect sizes, develop prior distributions, and estimate 0.25-, 0.5-, and 0.75-quantiles to determine small, medium, and large thresholds, respectively. Data from 643 studies comprising 6574 effect sizes were included in the analyses. Large differences in distributions for both SMDpre and %Improve were identified across outcome domains (strength, power, jump and sprint performance), with analyses of the tails of the distributions indicating potential large overestimations of SMDpre values. Future evaluations of S&C training will be improved using Bayesian approaches featuring the information and priors developed in this study. To facilitate an uptake of Bayesian methods within S&C, an easily accessible tool employing intuitive Bayesian updating was created. It is recommended that the tool and specific thresholds be used instead of isolated effect size calculations and Cohen's generic values when evaluating S&C training.
Assuntos
Treinamento Resistido , Humanos , Teorema de BayesRESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19) convalescent individuals carry antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that, through a plasma donation, can be used as a potential therapeutic either in direct transfusion or for the manufacture of hyperimmune globulin (HIG). The success of such interventions depends on the antibody potency in such plasma donations, but little information on the collection of potent units is currently available. STUDY DESIGN AND METHODS: A total of 8749 plasma units, collected from April until September 2020 from first-time U.S. COVID-19 convalescent plasma donors, were characterized for SARS-CoV-2 immunoglobulin G (IgG) antibodies by Abbott chemiluminescent microparticle immunoassay (CMIA). The period between COVID-19 onset until donation and donor age, ethnicity, sex, and COVID-19 severity were evaluated against the obtained signal (index S/C). RESULTS: A marked decrease in mean index S/C was seen over the plasma collection period surveyed, which was significantly correlated to decreases in mean plasma donor age (p < .0001; R2 = .726) and percentage of donations obtained from COVID-19 convalescent patients who had been hospitalized (p = .001; R2 = .4426). The highest titer plasma units were obtained soon after convalescence from COVID-19 patients who required hospitalization, from advanced age donors, and from Black/African/Hispanic American versus White/Caucasian ethnicities, whereas there was no effect of donor sex on the values obtained with the Abbott CMIA. CONCLUSION: Since the onset of the pandemic, the average SARS-CoV-2 IgG values of first-time U.S. COVID-19 convalescent plasma donations have significantly dropped, mainly due to donations from progressively younger aged donors who tend to experience less severe COVID-19.
Assuntos
Anticorpos Antivirais/sangue , Doadores de Sangue , COVID-19/sangue , COVID-19/terapia , Convalescença , Pandemias , SARS-CoV-2/metabolismo , Adulto , Idoso , COVID-19/epidemiologia , Feminino , Humanos , Imunização Passiva , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Soroterapia para COVID-19RESUMO
Railway infrastructure plays a major role in providing the most cost-effective way to transport freight and passengers. The increase in train speed, traffic growth, heavier axles, and harsh environments make railway assets susceptible to degradation and failure. Railway switches and crossings (S&C) are a key element in any railway network, providing flexible traffic for trains to switch between tracks (through or turnout direction). S&C systems have complex structures, with many components, such as crossing parts, frogs, switchblades, and point machines. Many technologies (e.g., electrical, mechanical, and electronic devices) are used to operate and control S&C. These S&C systems are subject to failures and malfunctions that can cause delays, traffic disruptions, and even deadly accidents. Suitable field-based monitoring techniques to deal with fault detection in railway S&C systems are sought after. Wear is the major cause of S&C system failures. A novel measuring method to monitor excessive wear on the frog, as part of S&C, based on fiber Bragg grating (FBG) optical fiber sensors, is discussed in this paper. The developed solution is based on FBG sensors measuring the strain profile of the frog of S&C to determine wear size. A numerical model of a 3D prototype was developed through the finite element method, to define loading testing conditions, as well as for comparison with experimental tests. The sensors were examined under periodic and controlled loading tests. Results of this pilot study, based on simulation and laboratory tests, have shown a correlation for the static load. It was shown that the results of the experimental and the numerical studies were in good agreement.
RESUMO
Phosphorescent iridium(III) complexes have been widely researched for the fabrication of efficient organic light-emitting diodes (OLEDs). In this work, three red Ir(III) complexes named Ir-1, Ir-2, and Ir-3, with Ir-S-C-S four-membered framework rings, were synthesized efficiently at room temperature within 5 min using sulfur-containing ancillary ligands with electron-donating groups of 9,10-dihydro-9,9-dimethylacridine, phenoxazine, and phenothiazine, respectively. Due to the same main ligand of 4-(4-(trifluoromethyl)phenyl)quinazoline, all Ir(III) complexes showed similar photoluminescence emissions at 622, 619, and 622 nm with phosphorescence quantum yields of 35.4%, 50.4%, and 52.8%, respectively. OLEDs employing these complexes as emitters with the structure of ITO (indium tin oxide)/HAT-CN (dipyra-zino[2,3-f,2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile, 5 nm)/TAPC (4,4'-cyclohexylidenebis[N,N-bis-(4-methylphenyl)aniline], 40 nm)/TCTA (4,4â³,4â³-tris(carbazol-9-yl)triphenylamine, 10 nm)/Ir(III) complex (10 wt%): 2,6DCzPPy (2,6-bis-(3-(carbazol-9-yl)phenyl)pyridine, 10 nm)/TmPyPB (1,3,5-tri(mpyrid-3-yl-phenyl)benzene, 50 nm)/LiF (1 nm)/Al (100 nm) achieved good performance. In particular, the device based on complex Ir-3 with the phenothiazine unit showed the best performance with a maximum brightness of 22,480 cd m-2, a maximum current efficiency of 23.71 cd A-1, and a maximum external quantum efficiency of 18.1%. The research results suggest the Ir(III) complexes with a four-membered ring Ir-S-C-S backbone provide ideas for the rapid preparation of Ir(III) complexes for OLEDs.
RESUMO
In the present study, we have investigated and/or compared the role of glibenclamide, G as cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor, and lubiprostone, L as chloride channel-2 (ClC-2) activator in the 2,4-dinitrobenzene sulfonic acid (DNBS)-induced gastrointestinal inflammation. GI inflammation was induced by intrarectal administration of DNBS. Rats were randomly allocated in 5 groups as sham control, distilled water + DNBS, sulfasalazine (S) + DNBS, G + DNBS, and L + DNBS. All the groups were pre-treated successively for five days before the induction of colitis. One day before and the first four days after DNBS administration various parameters were studied. Later, blood chemistry, colon's gross structure, histology, and the antioxidant load was examined. Pre-treatment with G significantly protected the change induced by DNBS concerning the change in body weight, food intake, diarrhea, occult blood in the feces, wet weight of the colon, and spleen. G because of its anti-inflammatory property down-regulated the neutrophil and WBC count and up-regulated the lymphocyte number. Moreover, G efficiently ameliorates the oxidative stress in the colon and declines the level of myeloperoxidase and malondialdehyde and up-regulated the level of superoxide dismutase and glutathione. Lubiprostone has not shown any promising effects, in fact, it causes an increase in diarrheal frequency. Our findings from this study represent that G has good potential to ameliorate GI inflammation induced by DNBS by its multiple actions including CFTR blockage and reducing the release of inflammatory markers from the MCs, anti-inflammatory and free radical scavenging property.
RESUMO
OBJECTIVE: The aim: To evaluate the effect of single daily 25 mg of spironolactone on serum electrolytes and kidney function tests in patients with severe chronic left sided heart failure. PATIENTS AND METHODS: Materials and methods: 60 patients with severe chronic left sided heart failure were enrolled in this study and they were divided in to 2 equal groups' one group with standard therapy of HF and the other with spironolactone in a dose of 25 mg / day, as an additive therapy to the standard one. Serum electrolytes and kidney function tests were assessed at the beginning of the study and after 3 months. RESULTS: Results: A significant increment in serum potassium (p<0.05) was observed in the spironolactone group after 3 months treatment, while no significant reduction in serum sodium (p>0.05) and no significant increase in serum creatinine and blood urea (p>0.05) was noticed in the same group, control group showed no significant changes (p>0.05), in both serum electrolytes (S.K and S.Na) and renal function tests (S.C and B.U). CONCLUSION: Conclusions: Spironolactone caused a significant elevation of serum potassium level but this elevation is still with the clinically accepted ranges when low dose of spironolactone is used and with intact renal function. Serum creatinine level was not significantly increased with 25 mgl day of spironolactone. We conclude that Renal function tests namely blood urea and serum Creatinine, and serum potassium should be closely monitored in patients on spironolactone therapy especially those patients who use ACEI and ARBs in addition.
Assuntos
Insuficiência Cardíaca , Hiperpotassemia , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Diuréticos , Eletrólitos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hiperpotassemia/induzido quimicamente , Rim/fisiologia , Testes de Função Renal , EspironolactonaRESUMO
An efficient chemical synthesis route, with an aim of reaching an ultrahigh nitrogen (N)-doping level in carbon materials can provide a platform where the type and amount of N dopant can be tuned over a wide range. We propose a C-S-C linkage-triggered confined-pyrolysis strategy for the high-efficiency inâ situ N-doping into carbon matrix and an ultrahigh doping level up to 13.5â at %, which is close to the theoretical upper limit (15.2â at %) is realized at a high carbonization temperature of 1000 °C. The pyridinic N is dominant with a maximum percent of 48.7 %. By using I3 - reduction as an example, the resultant NCM-5 exhibits the best activity with a power conversion efficiency of 8.77 %. A pyridinic N site-dependent activity is demonstrated in which the amount of active sites increases with the increase of pyridinic N, and the carbon atom adjacent to electron-withdrawing pyridinic N at the armchair edge acts as the most favorable site for the adsorption of I2 .
RESUMO
The photosynthetic efficiency of plants in different environments is controlled by stomata, hydraulics, biochemistry, and mesophyll conductance (gm). Recently, gm was demonstrated to be the key limitation of photosynthesis in gymnosperms. Values of gm across gymnosperms varied over 20-fold, but this variation was poorly explained by robust structure-bound integrated traits such as leaf dry mass per area. Understanding how the component structural traits control gm is central for identifying the determinants of variability in gm across plant functional and phylogenetic groups. Here, we investigated the structural traits responsible for gm in 65 diverse gymnosperms. Although the integrated morphological traits, shape, and anatomical characteristics varied widely across species, the distinguishing features of all gymnosperms were thick mesophyll cell walls and low chloroplast area exposed to intercellular airspace (Sc/S) compared with angiosperms. Sc/S and cell wall thickness were the fundamental traits driving variations in gm across gymnosperm species. Chloroplast thickness was the strongest limitation of gm among liquid-phase components. The variation in leaf dry mass per area was not correlated with the key ultrastructural traits determining gm. Thus, given the absence of correlating integrated easy-to-measure traits, detailed knowledge of underlying component traits controlling gm across plant taxa is necessary to understand the photosynthetic limitations across ecosystems.
Assuntos
Cycadopsida , Ecossistema , Dióxido de Carbono/metabolismo , Parede Celular , Cloroplastos/metabolismo , Células do Mesofilo , Fotossíntese , Filogenia , Folhas de PlantaRESUMO
Nearly 500 basidiomycetous yeast species were accepted in the latest edition of The Yeasts: A Taxonomic Study published in 2011. However, this number presents only the tip of the iceberg of yeast species diversity in nature. Possibly more than 99 % of yeast species, as is true for many groups of fungi, are yet unknown and await discovery. Over the past two decades nearly 200 unidentified isolates were obtained during a series of environmental surveys of yeasts in phyllosphere and soils, mainly from China. Among these isolates, 107 new species were identified based on the phylogenetic analyses of nuclear ribosomal DNA (rDNA) [D1/D2 domains of the large subunit (LSU), the small subunit (SSU), and the internal transcribed spacer region including the 5.8S rDNA (ITS)] and protein-coding genes [both subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB)], and physiological comparisons. Forty-six of these belong to 16 genera in the Tremellomycetes (Agaricomycotina). The other 61 are distributed in 26 genera in the Pucciniomycotina. Here we circumscribe eight new genera, three new families and two new orders based on the multi-locus phylogenetic analyses combined with the clustering optimisation analysis and the predicted similarity thresholds for yeasts and filamentous fungal delimitation at genus and higher ranks. Additionally, as a result of these analyses, three new combinations are proposed and 66 taxa are validated.
RESUMO
All-solid-state lithium-sulfur batteries (ASSLSBs) have attracted great attention due to their inherent ability to eliminate the two critical issues (polysulfide shuttle effect and safety) of traditional liquid electrolyte based Li-S batteries. However, it remains a huge challenge for ASSLSBs to achieve high areal active mass loading and high active material utilization simultaneously due to the insulating nature of sulfur and Li2S, and the large volume change during cycling. Herein, a Li2S@C nanocomposite with Li2S nanocrystals uniformly embedded in conductive carbon matrix, is in situ generated by the combustion of lithium metal with CS2. Benefiting from its unique architecture, the Li2S@C exhibits exceptional electrochemical performance as cathode for ASSLSBs, with both ultrahigh areal Li2S loading (7 mg cm-2) and 91% of Li2S utilization (corresponding to a reversible capacity of 1067 mAh g-1). Moreover, the Li2S@C also possesses outstanding rate capability and cycling stability. High reversible capacity of 644 mAh g-1 is delivered at 2 mA cm-2 even after 700 cycles. This work demonstrates that ASSLSBs with superior electrochemical performance can be realized via rational design of the cathode structure, which provides a promising prospect to the development of ASSLSBs with practical energy density surpassing that of lithium ion batteries.
RESUMO
The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (C1q, C1r, and C1s) and lectin (mannose binding lectin A, mannose binding lectin C, collectin 11, ficolin A, and ficolin B) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (C1q, C1s, C1r) and some lectin (collectin 11, ficolin A, ficolin B) initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (Cd177), T cells (Cd8), astrocytes (glial fibrillary acidic protein-GFAP), microglia/macrophages (allograft inflammatory factor 1-IBA-1), and microglia (transmembrane protein 119-TMEM119); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.
Assuntos
Lesões Encefálicas Traumáticas/genética , Ativação do Complemento/genética , Lectina de Ligação a Manose da Via do Complemento/genética , Lectinas/genética , Animais , Lesões Encefálicas Traumáticas/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Complemento C1/genética , Complemento C1/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C1r/genética , Complemento C1r/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hipocampo/metabolismo , Humanos , Lectinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neostriado/metabolismo , Tálamo/metabolismo , Fatores de TempoRESUMO
The ratio of substrate to catalyst (S/C) is a prime target for the application of asymmetric production of enantiomerically enriched intermediates by whole-cell biocatalyst. In the present study, an attractive increase in S/C was achieved in a natural deep-eutectic solvent (NADES) containing reaction system under microaerobic condition for high production of (S)-1-[3,5-bis(trifluoromethyl)phenyl]ethanol ((S)-3,5-BTPE) with Candida tropicalis 104. In PBS buffer (0.2 M, pH 8.0) at 200 rpm and 30 °C, 79.5 g (Dry Cell Weight, DCW)/L C. tropicalis 104 maintained the same yield of 73.7% for the bioreduction of 3,5-bis(trifluoromethyl)acetophenone (BTAP) under an oxygen-deficient environment compared with oxygen-sufficient conditions, while substrate load increased 4.0-fold (from 50 mM to 200 mM). Furthermore, when choline chloride:trehalose (ChCl:T, 1:1 molar ratio) was introduced into the reaction system for its versatility of increasing cell membrane permeability and declining BTAP cytotoxicity to biocatalyst, the yields were further increased to 86.2% under 200 mM BTAP, or 72.9% at 300 mM BTAP. After the optimization of various reaction parameters involved in the bioreduction, and the amount of biocatalyst and maltose co-substrate remained 79.5 g (DCW)/L and 50 g/L, the S/C for the reduction elevated 6.3 times (3.8 mM/g versus 0.6 mM/g). By altering the respiratory pattern of the whole-cell biocatalyst and exploiting the ChCl:T-containing reaction system, the developed strategy exhibits an attractive potential for enhancing catalytic efficiency of whole-cell-mediated reduction, and provides valuable insight for the development of whole-cell catalysis.
Assuntos
Aerobiose , Fermentação , Álcool Feniletílico/metabolismo , Solventes , Anaerobiose , Candida tropicalis/metabolismo , Catálise , Estrutura Molecular , Oxigênio/metabolismo , Álcool Feniletílico/química , Solventes/químicaRESUMO
To study the effect of Lonicera fulvotometosa(LFH) on expression of genes related to inflammatory pathways in the lung tissue of rats with acute lung injury(ALI) induced by lipopolysaccharide(LPS), explore the lung-protective effects and inflammatory mechanisms of L. fulvotometosa water extract, and provide experimental and theoretical basis for the clinical application of LFH. Forty SD rats were randomly divided into 4 groups: normal group, model group(LPS, 5 mg·kg~(-1)), LFH group(7.2 g·kg~(-1)) and dexa-methasone group(Dexa, 5 mg·kg~(-1)). The rats in LFH group received intragastric administration of water extract once a day for 5 days; rats in dexamethasone group received intraperitoneal injection for 2 hours before modeling. Except the normal group, the rats in other groups were injected intraperitoneally with LPS(5 mg·kg~(-1)) to induce ALI rats model. Serum, bronchoalveolar lavage fluid(BALF) and lung tissues were collected 6 hours after modeling. The lung tissues were taken for pathological observation; enzyme-linked immunosorbent assay(ELISA) was used to detect changes of inflammatory factors in serum and BALF; Real-time quantitative polymerase chain reaction(RT-qPCR) was applied to detect mRNA expression of tumor necrosis factor alpha inducible protein 3(TNFAIP3), interleukin(IL) 1 R1, interleukin(IL) 6 R and nuclear factor κB inhibitor α(NFKBIA) in the lung tissues. The degree of lung injury was lighter in LFH group than that in the LPS group. As compared with the LPS group, the levels of interleukin-1ß(IL-1ß), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α) in serum and BALF, malondialdehyde(MDA) and myeloperoxidase(MPO) in lung tissues were significantly reduced in LFH group and Dexa group, while glutathione peroxidase(GSH-Px), superoxide dismutase(SOD) in lung tissues were significantly increased; the mRNA expression of TNFAIP3, IL1 R1, IL6 R and NFKBIA in the lung tissues of the LFH group was significantly lower than that of the LPS group. The water extract of LFH can significantly reduce the content of inflammatory factors in rats with ALI, and down-regulate the mRNA expression of TNFAIP3, IL1 R1, IL6 R and NFKBIA in the lung tissues, showing significant anti-inflammatory effect. Its mechanism may be related to the regulation of NF-κB signaling pathway, and the pulmonary inflammation response may be reduced by down-regulating the expression of downstream-related inflammatory factors.
Assuntos
Lesão Pulmonar Aguda , Lonicera , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Animais , Anti-Inflamatórios/uso terapêutico , Líquido da Lavagem Broncoalveolar , Lipopolissacarídeos/toxicidade , Pulmão , NF-kappa B/genética , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genéticaRESUMO
In this study, we isolated nine compounds from the acid hydrolysate of the flower buds of Lonicera fulvotomentosa Hsu et S. C. Cheng and characterized their chemical structures using 1H-NMR, 13C-NMR, and electron ionization mass spectroscopy (EI-MS). These compounds were identified as ß-sitosterol (1), 5,5'-dibutoxy-2,2'-bifuran (2), nonacosane-10-ol (3), ethyl (3ß)-3,23-dihydroxyolean-12-en-28-oate (4), oleanolic acid (5), ethyl caffeate (6), caffeic acid (7), isovanillin (8), and hederagenin (9), with 4 as a new triterpene compound. Inhibitory activity against human immunodeficiency virus (HIV) protease was also evaluated for the compounds, and only ethyl caffeate, caffeic acid, and isovanillin (6, 7, and 8) exhibited inhibitory effects, with IC50 values of 1.0 µM, 1.5 µM, and 3.5 µM, respectively. Molecular docking with energy minimization and subsequent molecular dynamic (MD) simulation showed that ethyl caffeate and caffeic acid bound to the active site of HIV protease, while isovanillin drifted out from the active site and dissociated into bulk water during MD simulations, and most of the binding residues of HIV protease have been previously identified for HIV protease inhibitors. These results suggest that caffeic acid derivatives may possess inhibitory activities towards HIV protease other than previously reported inhibitory activities against HIV integrase, and thus ethyl caffeate and caffeic acid could be used as lead compounds in developing potential HIV protease inhibitors, and possibly even dual-function inhibitors against HIV.
Assuntos
Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/enzimologia , Lonicera/química , Compostos Fitoquímicos/farmacologia , Domínio Catalítico , Protease de HIV/química , Inibidores da Protease de HIV/química , Espectrometria de Massas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Compostos Fitoquímicos/química , Extratos Vegetais/análiseRESUMO
Formation of the α-helical conformation in the poly-l-alanine (PA) sequence regions, subsequent structural transition to ß-sheet during natural spinning, and presence of residual α-helices in Samia cynthia ricini (S. c. ricini) native silk fiber have been experimentally proven. However, the aggregation state of the residual α-helices, and their influence on the mechanical deformation behavior in native fiber remain unclear. Here we show that the α-helices form an ordered aggregation state with a hexagonal packing in the aqueous solution, some of which remain during natural spinning. X-ray scattering and differential scanning calorimetry (DSC) analyses revealed occurrence of a structural transition of the residual α-helices to the ß-sheet structure, accompanied by disappearance of the plateau region in the force-strain curve, due to heat-treatment at ~220 °C. On the basis of X-ray scattering before and after tensile stretching of S. c. ricini native silk, a direct connection between the plateau region and the α-helix to ß-sheet structural transition was confirmed. Our findings demonstrate the importance of the PA sequence regions in fiber structure formation and their influence on the tensile deformation behavior of S. c. ricini silk, features believed to be essentially similar in other saturniid silks. We strongly believe the residual ordered α-helices to be strategically and systematically designed by S. c. ricini silkworms to impart flexibility in native silk fiber. We anticipate that these knowledge forms a basis for fruitful strategies in the design and development of amino acid sequences for artificial silks with desired mechanical properties.
Assuntos
Bombyx/química , Fibroínas/ultraestrutura , Peptídeos/química , Agregados Proteicos , Animais , Bombyx/fisiologia , Fibroínas/isolamento & purificação , Temperatura Alta , Larva/química , Larva/fisiologia , Teste de Materiais , Peptídeos/isolamento & purificação , Maleabilidade , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Resistência à TraçãoRESUMO
The chemical composition of the essential oil from Jatropha pelargoniifolia roots was determined via GC-FID. There were 80 compounds, representing 99.99% of the total oil constituents. Among these, 77.31% were sesquiterpenes, 14.62% were fatty acids, 7.21% were other components (i.e., phenolics, hydrocarbons, etc.), and 0.85% were monoterpenes. The major compounds in the oil were γ-eudesmol (35.31%), 5-guaien-11-ol (14.43%), epi-cedrol (8.19%), oleic acid (5.23%), bulnesol (4.45%), α-linoleic acid (4.20%), 3,4-dimethoxycinnamic acid (3.83%), palmitic acid (2.69%), isolongifolanone (2.68%), eicosane (1.41%), and cedrol (1.14%). Oxygenated sesquiterpenes were found to represent more than 50% percent of the total oil content. Moreover, the essential oil was evaluated for anti-inflammatory, antioxidant, antipyretic, and antinociceptive activities using in vivo and in vitro models. Additionally, the antioxidant potential of the oil was evaluated using various in vitro antioxidant tests, including DPPHâ¢, ABTSâ¢+ and FRAP. At a dose of 240⯵l/kg, the oil showed anti-inflammatory (59.12%), antipyretic (37.00⯱â¯0.11), and antinociceptive (47.58%) activities and showed significant (pâ¯<â¯0.001) effect as compared to a standard drug (phenylbutazone and indomethacin). These findings demonstrated that the essential oil of Jatropha pelargoniifolia root could be used as a natural source for their anti-inflammatory, antinociceptive, antipyretic, and antioxidant effects.