RESUMO
BACKGROUND AND PURPOSE: Despite substantial evidence supporting the role of resident bacterial communities in therapeutic fasting outcomes, research has primarily focused on gut microbiota, leaving changes in oral microbiota largely unexplored. The clinical significance of oral health changes during fasting is nonetheless underscored by the documented development of halitosis in fasting individuals. However, no scientific studies have comprehensively examined the interplay between salivary microbiota alterations, inflammatory changes in the gingival crevice, and the production of malodorous volatile compounds. We examined volatile sulphur compounds (VSC) in breath during fasting, cytokine levels in the gingival crevice, and oral microbiota composition of the saliva in a single-arm interventional study involving 36 subjects who fasted for 10 ± 3 days. MATERIALS AND METHODS: Participants fasted according to Buchinger fasting guidelines. VSC were evaluated every morning before any food or drink intake using the OralChroma gas chromatography device. Saliva and gingival crevicular fluid (GCF) samples were collected at the clinical site before fasting, at the end of fasting, and at the end of food reintroduction. Follow-up saliva samples were sent to the patients after 1 and 3 months. Saliva samples were processed and analysed by targeted sequencing of 16S rRNA gene amplicons, whereas the expression of 6 inflammatory markers in the GCF were analysed using a multiplex fluorescent bead-based immunoassay. RESULTS: The quantification of volatile compounds in the breath demonstrated a statistically significant increase in dimethylsulfide levels during fasting, which corroborates the occurrence of bad breath as a common side effect of fasting. Salivary microbiota profiling showed a shift in microbial composition, including reduction in the levels of Neisseria, Gemella and Porphyromonas spp., concomitant with an increase in the levels of Megasphaera, Dialister, Prevotella, Veillonella, Bifidobacteria, Leptotrichia, Selenomonas, Alloprevotella, and Atopobium. We further demonstrated a reduction in the levels of the pro-inflammatory cytokine interleukin-8 in the GCF. CONCLUSION: Dimethylsulfide concentrations in the breath increased during fasting, and this was correlated to changes in the oral microbiota. Future studies are needed to illuminate the possible impact of these changes on oral and general health status.
Assuntos
Testes Respiratórios , Jejum , Microbiota , Saliva , Compostos de Enxofre , Humanos , Saliva/microbiologia , Saliva/química , Saliva/metabolismo , Compostos de Enxofre/análise , Compostos de Enxofre/metabolismo , Masculino , Feminino , Adulto , Testes Respiratórios/métodos , Biomarcadores/análise , Pessoa de Meia-Idade , Halitose/microbiologia , Halitose/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismoRESUMO
Background: Mobile phone addiction (MPA) greatly affects the biological clock and sleep quality and is emerging as a behavioral disorder. The saliva microbiota has been linked to circadian rhythms, and our previous research revealed dysrhythmic saliva metabolites in MPA subjects with sleep disorders (MPASD). In addition, acupuncture had positive effects. However, the dysbiotic saliva microbiota in MPASD patients and the restorative effects of acupuncture are unclear. Objectives: To probe the circadian dysrhythmic characteristics of the saliva microbiota and acupunctural restoration in MPASD patients. Methods: MPASD patients and healthy volunteers were recruited by the Mobile Phone Addiction Tendency Scale (MPATS) and the Pittsburgh Sleep Quality Index (PSQI). Saliva samples were collected every 4 h for 72 h. After saliva sampling, six MPDSD subjects (group M) were acupuncturally treated (group T), and subsequent saliva sampling was conducted posttreatment. Finally, all the samples were subjected to 16S rRNA gene sequencing and bioinformatic analysis. Results: Significantly increased MPATS and PSQI scores were observed in MPDSD patients (p< 0.01), but these scores decreased (p<0.001) after acupuncture intervention. Compared with those in healthy controls, the diversity and structure of the saliva microbiota in MPASD patients were markedly disrupted. Six genera with circadian rhythms were detected in all groups, including Sulfurovum, Peptostreptococcus, Porphyromonas and Prevotella. There were five genera with circadian rhythmicity in healthy people, of which the rhythmicities of the genera Rothia and Lautropia disappeared in MPASD patients but effectively resumed after acupuncture intervention. Conclusions: This work revealed dysrhythmic salivary microbes in MPASD patients, and acupuncture, as a potential intervention, could be effective in mitigating this ever-rising behavioral epidemic.
RESUMO
BACKGROUND: This study sought to characterize the saliva microbiota of Candida carriage Sjögren's syndrome (SS) patients compared to oral candidiasis and healthy patients by high-throughput sequencing. METHODS: Fifteen patients were included, with five Candida carriage SS patients (decayed, missing, and filled teeth (DMFT) score 22), five oral candidiasis patients (DMFT score 17), and five caries active healthy patients (DMFT score 14). Bacterial 16S rRNA was extracted from rinsed whole saliva. PCR amplification generated DNA amplicons of the V3-V4 hypervariable region, which were sequenced on an Illumina HiSeq 2500 sequencing platform and compared and aligned to the SILVA database. Taxonomy abundance and community structure diversity was analyzed using Mothur software v1.40.0. RESULTS: A total of 1016/1298/1085 operational taxonomic units (OTUs) were obtained from SS patients/oral candidiasis patient/healthy patients. Treponema, Lactobacillus, Streptococcus, Selenomonas, and Veillonella were the primary genera in the three groups. The most abundant significantly mutative taxonomy (OTU001) was Veillonella parvula. Microbial diversity (alpha diversity and beta diversity) was significantly increased in SS patients. ANOSIM analyses revealed significantly different microbial compositional heterogeneity in SS patients compared to oral candidiasis and healthy patients. CONCLUSION: Microbial dysbiosis differs significantly in SS patients independent of oral Candida carriage and DMFT.
RESUMO
PROBLEM: Prenatal exposure to intrauterine inflammation (IUI) is a crucial event in PTB pathophysiology. However, the relationship between microflora and PTB is not fully elucidated. METHOD OF STUDY: In this study, we established an intrauterine inflammation mouse model via LPS intrauterine injection. The saliva and amniotic fluid were collected for 16s RNA gene sequencing. The levels of TNF-α and IL-1ß in mouse amniotic fluid were determined by ELISA assays. RESULTS: Up to 60% of the operational taxonomic units (OTUs) in the saliva and amniotic fluid of PBS-treated mice were overlapped. LPS treatment-induced changes in the abundance of oral and amniotic fluid microorganisms. Both immune-associated probiotics, salivarius and mastitidis, were still detected in saliva (at significantly increased levels) after LPS-induced intrauterine inflammation and almost no probiotics of any type were detected in amniotic fluid, suggesting that the uterine cavity seems to be more susceptible to LPS compared to the oral cavity. Moreover, the abundance of pathogenic bacteria Escherichia coli was increased in both saliva and amniotic fluid after LPS treatment. The level of TNF-α and IL-1ß in amniotic fluid is positively related to the amniotic fluid E. coli abundance. CONCLUSIONS: The microbial composition of saliva and amniotic fluid of pregnant mice was similar. LPS-induced intrauterine inflammation decreased the consistency of microbial composition in mouse saliva and amniotic fluid, increased the abundance of E. coli in saliva and amniotic fluid, and decreased the abundance of immune-associated probiotics, especially in amniotic fluid.
Assuntos
Líquido Amniótico , Fator de Necrose Tumoral alfa , Gravidez , Feminino , Animais , Camundongos , Escherichia coli , Saliva , Lipopolissacarídeos/farmacologia , Inflamação/patologiaRESUMO
Imposition of social and health behavior mitigations are important control measures in response to the coronavirus disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Although postulated that these measures may impact the human microbiota including losses in diversity from heightened hygiene and social distancing measures, this hypothesis remains to be tested. Other impacts on the microbiota and host mental and physical health status associations from these measures are also not well-studied. Here we examine changes in stool and oral microbiota by analyzing 16S rRNA gene sequence taxonomic profiles from the same individuals during pre-pandemic (before March 2020) and early pandemic (May-November 2020) phases. During the early pandemic phase, individuals were also surveyed using questionnaires to report health histories, anxiety, depression, sleep and other lifestyle behaviors in a cohort of predominantly Caucasian adults (mean age = 61.5 years) with the majority reporting at least one underlying co-morbidity. We identified changes in microbiota (stool n = 288; oral n = 89) between pre-pandemic and early pandemic time points from the same subject and associated these differences with questionnaire responses using linear statistical models and hierarchical clustering of microbiota composition coupled to logistic regression. While a trend in loss of diversity was identified between pre-pandemic and early pandemic time points it was not statistically significant. Paired difference analyses between individuals identified fewer significant changes between pre-pandemic and early pandemic microbiota in those who reported fewer comorbidities. Cluster transition analyses of stool and saliva microbiota determined most individuals remained in the same cluster assignments from the pre-pandemic to early pandemic period. Individuals with microbiota that shifted in composition, causing them to depart a pre-pandemic cluster, reported more health issues and pandemic-associated worries. Collectively, our study identified that stool and saliva microbiota from the pre-pandemic to early pandemic periods largely exhibited ecological stability (especially stool microbiota) with most associations in loss of diversity or changes in composition related to more reported health issues and pandemic-associated worries. Longitudinal observational cohorts are necessary to monitor the microbiome in response to pandemics and changes in public health measures.
Assuntos
COVID-19 , Microbiota , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pessoa de Meia-Idade , Pandemias , RNA Ribossômico 16S/genética , SARS-CoV-2/genéticaRESUMO
Background: Helicobacter pylori (H. pylori) eradication has been reported to cause short-term disruption of gut microbiota. It is acknowledged that probiotics supplementation mitigates side effects induced by H. pylori eradication, yet its role on alleviating dysbiosis of microbiota is obscure. Objectives: To evaluate the impact of probiotics on gastrointestinal microbiota after eradication therapy. Methods: This was a multicenter, double-blinded, randomized trial done at seven centers in China. A total of 276 treatment-naïve H. pylori-positive patients were randomly assigned to receive 14-day bismuth-containing quadruple therapy (esomeprazole, bismuth, amoxicillin, furazolidone) combined with probiotics (Bifidobacterium Tetragenous viable Bacteria Tablets) (n=140) or placebo (n=136) for 28 days. Saliva, gastric mucosa and fecal samples were collected before and after therapy for 16S rRNA gene sequencing. Results: The incidence of gastrointestinal adverse events was lower in probiotics group compared to placebo group (23.6% vs 37.7%, p=0.016), while there was no significant difference in eradication rate. We found dramatic perturbations of gut microbiota immediately following eradication, with the predominance of Proteobacteria in replacement of commensal Firmicutes and Bacteroidetes, and gradually restored after two weeks. The reduction of gut Bacteroidetes caused by eradication drugs was neutralized with probiotics supplementation. The gastric microbiota was completely reconstituted with H. pylori depleted and other taxa flourished. Of note, patients treated with probiotics showed smaller fluctuations of gastric microbiota compared to those with placebo. We also observed changes of saliva microbiota after H. pylori eradication, illustrated by the overgrowth of Neisseria and depletion of Streptococcus. The expansion of some pathogenic genera, including Porphyromonas, Leptotrichia, in the mouth was suppressed by probiotics. Conclusion: This study not only demonstrated the beneficial effect of probiotics implementation on side events during H. pylori eradication but also provided a comprehensive profile of microbiome alterations along gastrointestinal tract that modulated by probiotics.
Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Probióticos , Humanos , Infecções por Helicobacter/microbiologia , Bismuto/farmacologia , Bismuto/uso terapêutico , RNA Ribossômico 16S/genética , Antibacterianos/efeitos adversos , Probióticos/uso terapêutico , BacteroidetesRESUMO
Dental caries is one of the most prevalent chronic oral diseases, affecting approximately half of children worldwide. The microbial composition of dental caries may depend on age, oral health, diet, and geography, yet the effect of geography on these microbiomes is largely underexplored. Here, we profiled and compared saliva microbiota from 130 individuals aged 6 to 8 years old, representing both healthy children (H group) and children with caries-affected (C group) from two geographical regions of China: a northern city (Qingdao group) and a southern city (Guangzhou group). First, the saliva microbiota exhibited profound differences in diversity and composition between the C and H groups. The caries microbiota featured a lower alpha diversity and more variable community structure than the healthy microbiota. Furthermore, the relative abundance of several genera (e.g., Lactobacillus, Gemella, Cryptobacterium and Mitsuokella) was significantly higher in the C group than in the H group (p<0.05). Next, geography dominated over disease status in shaping salivary microbiota, and a wide array of salivary bacteria was highly predictive of the individuals' city of origin. Finally, we built a universal diagnostic model based on 14 bacterial species, which can diagnose caries with 87% (AUC=86.00%) and 85% (AUC=91.02%) accuracy within each city and 83% accuracy across cities (AUC=92.17%). Although the detection rate of Streptococcus mutans in populations is not very high, it could be regarded as a single biomarker to diagnose caries with decent accuracy. These findings demonstrated that despite the large effect size of geography, a universal model based on salivary microbiota has the potential to diagnose caries across the Chinese child population.
Assuntos
Cárie Dentária , Microbiota , Criança , China/epidemiologia , Cárie Dentária/epidemiologia , Suscetibilidade à Cárie Dentária , Dentição Mista , Humanos , SalivaRESUMO
Excessive sucrose consumption is associated with numerous health problems, including dental caries, and is considered to play a critical role in shaping the human microbiota. Here, we aimed to confirm the association between sucrose exposure and oral microbiota profile, develop a short food-based index capturing variation among sucrose consumers and validate it against oral microbiota and dental caries in a derivation cohort with 16- to 79-year-old participants (n = 427). Intake and food preferences were recorded by questionnaires and saliva microbiota by 16S rDNA sequencing. Taxonomic similarities clustered participants into five clusters, where one stood out with highest sucrose intake and predicted sugar related metabolic pathways but lowest species diversity in the microbiota. Multivariate modelling of food intake and preferences revealed foods suitable for a sucrose index. This, similarly to sucrose intake, was related to bacterial pattern and caries status. The validity of the sucrose index was replicated in the population-based Gene-Lifestyle Interactions in Dental Endpoints (GLIDE, n = 105,520 Swedish adults) cohort. This suggested that the index captured clinically relevant variation in sucrose intake and that FFQ derived information may be suitable for screening of sucrose intake in the clinic and epidemiological studies, although adjustments to local consumption habits are needed.
Assuntos
Sacarose Alimentar/farmacologia , Microbiota , Boca/microbiologia , Adolescente , Adulto , Idoso , Bactérias/genética , Estudos de Coortes , Cárie Dentária/microbiologia , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Microbiota/efeitos dos fármacos , Pessoa de Meia-Idade , Análise de Componente Principal , RNA Ribossômico 16S/genética , Estatísticas não Paramétricas , Adulto JovemRESUMO
BACKGROUND: The human microbiota contributes to health and well-being. Antimicrobials (AM) have an immediate effect on microbial diversity and composition in the gut, but next to nothing is known about their long-term contribution to saliva microbiota. Our objectives were to investigate the long-term impact of AM use on saliva microbiota diversity and composition in preadolescents. We compared the lifetime effects by gender and AMs. We used data from 808 randomly selected children in the Finnish Health In Teens (Fin-HIT) cohort with register-based data on AM purchases from the Social Insurance Institution of Finland. Saliva microbiota was assessed with 16S rRNA (V3-V4) sequencing. The sequences were aligned to the SILVA ribosomal RNA database and classified and counted using the mothur pipeline. Associations between AM use and alpha-diversity (Shannon index) were identified with linear regression, while associations between beta-diversity (Bray-Curtis dissimilarity) and low, medium or high AM use were identified with PERMANOVA. RESULTS: Of the children, 53.6% were girls and their mean age was 11.7 (0.4) years. On average, the children had 7.4 (ranging from 0 to 41) AM prescriptions during their lifespan. The four most commonly used AMs were amoxicillin (n = 2622, 43.7%), azithromycin (n = 1495, 24.9%), amoxicillin-clavulanate (n = 1123, 18.7%) and phenoxymethylpenicillin (n = 408, 6.8%). A linear inverse association was observed between the use of azithromycin and Shannon index (b - 0.015, p value = 0.002) in all children, the effect was driven by girls (b - 0.032, p value = 0.001), while not present in boys. Dissimilarities were marked between high, medium and low users of all AMs combined, in azithromycin users specifically, and in boys with amoxicillin use. Amoxicillin and amoxicillin-clavulanate use was associated with the largest decrease in abundance of Rikenellaceae. AM use in general and phenoxymethylpenicillin specifically were associated with a decrease of Paludibacter and pathways related to amino acid degradations differed in proportion between high and low AM users. CONCLUSIONS: A systematic approach utilising reliable registry data on lifetime use of AMs demonstrated long-term effects on saliva microbiota diversity and composition. These effects are gender- and AM-dependent. We found that frequent lifelong use of AMs shifts bacterial profiles years later, which might have unforeseen health impacts in the future. Our findings emphasise a concern for high azithromycin use, which substantially decreases bacterial diversity and affects composition as well. Further studies are needed to determine the clinical implications of our findings. Video Abstract.
Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Microbiota/efeitos dos fármacos , Saliva/efeitos dos fármacos , Saliva/microbiologia , Adolescente , Criança , Feminino , Finlândia , Humanos , Masculino , Microbiota/genética , Estudos Prospectivos , RNA Ribossômico 16S/genética , Fatores de TempoRESUMO
This study explored the association between oral microbes and head and neck cancer (HNC) as well as symptoms related to patients with HNC before surgical treatment. Fifty-six patients with HNC and 64 matched healthy controls were recruited from West China hospital in Southwest China. The demographic, clinical, and symptom data were collected. Salivary samples were collected to determine the microbial characteristics using 16S rRNA gene sequencing. Patients with HNC presented increased Capnocytophaga abundances. The oral microbial markers as Capnocytophaga (area under the curve=0.81) achieved a high classification power between the HNC patients and healthy controls. Moreover, using Capnocytophaga in conjunction with symptom of voice/speech difficulty achieved an overall predicting accuracy of 92.5% comparing with using Capnocytophaga alone (79.2% accuracy) in distinguishing the HNC patients from healthy controls. Salivary microbial profiles and HNC symptoms may be potential biomarkers for HNC screening.
Assuntos
Biomarcadores , Neoplasias de Cabeça e Pescoço , Saliva , Idoso , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Saliva/microbiologiaRESUMO
Human identification has played a prominent role in forensic science for the past two decades. Identification based on unique genetic traits is driving the field. However, this may have limitations, for instance, for twins. Moreover, high-throughput sequencing techniques are now available and may provide a high amount of data likely useful in forensic science. This study investigates the potential for bacteria found in the salivary microbiome to be used to differentiate individuals. Two different targets (16S rRNA and rpoB) were chosen to maximise coverage of the salivary microbiome and when combined, they increase the power of differentiation (identification). Paired-end Illumina high-throughput sequencing was used to analyse the bacterial composition of saliva from two different people at four different time points (t = 0 and t = 28 days and then one year later at t = 0 and t = 28 days). Five major phyla dominate the samples: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. Streptococcus, a Firmicutes, is one of the most abundant aerobic genera found in saliva and targeting Streptococcus rpoB has enabled a deeper characterisation of the different streptococci species, which cannot be differentiated using 16S rRNA alone. We have observed that samples from the same person group together regardless of time of sampling. The results indicate that it is possible to distinguish two people using the bacterial microbiota present in their saliva.
Assuntos
Bactérias/classificação , Bactérias/genética , Antropologia Forense/métodos , Medicina Legal/métodos , Metagenômica/métodos , Microbiota , Saliva/microbiologia , Adulto , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Microbes are residents in a number of body sites, including the oral and nasal cavities, which are connected to the lung via the pharynx. The associations between oral diseases and increased risk of lung cancer have been reported in previous prospective studies. In this study, we measured variations of salivary microbiota and evaluated their potential association with lung cancer, including squamous cell carcinoma (SCC) and adenocarcinoma (AC). A three-phase study was performed: First, we investigated the salivary microbiota from 20 lung cancer patients (10 SCC and 10 AC) and control subjects (n=10) using a deep sequencing analysis. Salivary Capnocytophaga, Selenomonas, Veillonella and Neisseria were found to be significantly altered in patients with SCC and AC when compared to that in control subjects. Second, we confirmed the significant changes of Capnocytophaga, Veillonella and Neisseria in the same lung cancer patients using quantitative PCR (qPCR). Finally, these bacterial species were further validated on new patient/control cohorts (n=56) with qPCR. The combination of two bacterial biomarkers, Capnocytophaga and Veillonella, yielded a receiver operating characteristic (ROC) value of 0.86 with an 84.6% sensitivity and 86.7% specificity in distinguishing patients with SCC from control subjects and a ROC value of 0.80 with a 78.6% sensitivity and 80.0% specificity in distinguishing patients with AC from control subjects. In conclusion, we have for the first time demonstrated the association of saliva microbiota with lung cancer. Particularly, the combination of the 16S sequencing discovery with qPCR validation studies revealed that the levels of Capnocytophaga and Veillonella were significantly higher in the saliva from lung cancer patients, which may serve as potential biomarkers for the disease detection/classification.