Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 32(5): e2590, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343013

RESUMO

Near-term ecological forecasts provide resource managers advance notice of changes in ecosystem services, such as fisheries stocks, timber yields, or water quality. Importantly, ecological forecasts can identify where there is uncertainty in the forecasting system, which is necessary to improve forecast skill and guide interpretation of forecast results. Uncertainty partitioning identifies the relative contributions to total forecast variance introduced by different sources, including specification of the model structure, errors in driver data, and estimation of current states (initial conditions). Uncertainty partitioning could be particularly useful in improving forecasts of highly variable cyanobacterial densities, which are difficult to predict and present a persistent challenge for lake managers. As cyanobacteria can produce toxic and unsightly surface scums, advance warning when cyanobacterial densities are increasing could help managers mitigate water quality issues. Here, we fit 13 Bayesian state-space models to evaluate different hypotheses about cyanobacterial densities in a low nutrient lake that experiences sporadic surface scums of the toxin-producing cyanobacterium, Gloeotrichia echinulata. We used data from several summers of weekly cyanobacteria samples to identify dominant sources of uncertainty for near-term (1- to 4-week) forecasts of G. echinulata densities. Water temperature was an important predictor of cyanobacterial densities during model fitting and at the 4-week forecast horizon. However, no physical covariates improved model performance over a simple model including the previous week's densities in 1-week-ahead forecasts. Even the best fit models exhibited large variance in forecasted cyanobacterial densities and did not capture rare peak occurrences, indicating that significant explanatory variables when fitting models to historical data are not always effective for forecasting. Uncertainty partitioning revealed that model process specification and initial conditions dominated forecast uncertainty. These findings indicate that long-term studies of different cyanobacterial life stages and movement in the water column as well as measurements of drivers relevant to different life stages could improve model process representation of cyanobacteria abundance. In addition, improved observation protocols could better define initial conditions and reduce spatial misalignment of environmental data and cyanobacteria observations. Our results emphasize the importance of ecological forecasting principles and uncertainty partitioning to refine and understand predictive capacity across ecosystems.


Assuntos
Cianobactérias , Lagos , Teorema de Bayes , Ecossistema , Eutrofização , Incerteza
2.
J Environ Manage ; 310: 114782, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247688

RESUMO

Occurrence of cyanobacterial blooms in most lakes has dramatic changes in time and space. However, most current studies only focused on daily or seasonal scales to obtain a relatively coarse resolution result. To explore the possibility of fine changes occurring within a day in Lake Taihu (China), the area coverage of surface cyanobacterial blooms was quantified from the hourly Geostationary Ocean Color Imager (GOCI) data using a GOCI-derived cyanobacterial index. Based on that, diurnal change characteristics were explored at two scales, and the environmental impacts were investigated. For that, an classification method was first designed to identify the types of diurnal change patterns of cyanobacterial blooms automatically. This method classified the patterns into four types, including the decreasing (Type1), decreasing first and then increasing (Type2), increasing (Type3), increasing first and then decreasing (Type4). Based on that, the types of diurnal change patterns of blooms in Lake Taihu (from April 1, 2011 to October 31, 2020) were identified at pixel (500 m) and synoptic scales. Results indicated that Type1 and Type3 were two hot diurnal change patterns of blooms, and lakeshore was the hotspot occurring severe diurnal changes, and autumn was the hot season occurring frequent diurnal changes. Specifically, hotspot of Type1 was lakeshore, while hotspot of Type3 was Central Regions. Environmental impacts were analyzed at two scales. At pixel scale (500 m), diurnal variation of temperature affected the regional occurence of each type ofdiurnal changes patterns of blooms, and the afternoon temperature played the most critical role (p < 0.001, N = 8316). The occurrence frequency of Type1 was positively (R = 0.41) related with the afternoon temperature, and the occurrence frequency of Type3 was negatively (R = -0.37) related with it. Diurnal variation of wind speed was another key factor impacting the occurrence of obvious diurnal blooms changes, and the wind impacts should be distinguished when the wind speed was over or below 3.5 m/s. At synoptic scale, the interaction of multi environmental factors influenced the diurnal change degree of blooms area, and the environmental contributions were 71%.Comparing with the existing manual classifying workat synoptic scale, the designed classification method can identify the types of diurnal change patterns of blooms at a higher spatial resolution (500 m). These explorations on diurnal dynamics of cyanobacterial blooms in Lake Taihu provide a new insight for advanced cyanobacteria dynamics studies and regional water management.


Assuntos
Cianobactérias , Lagos , China , Monitoramento Ambiental , Eutrofização , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA