Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469989

RESUMO

Active restoration through silvicultural treatments (enrichment planting, cutting climbers and liberation thinning) is considered an important intervention in logged forests. However, its ability to enhance regeneration is key for long-term recovery of logged forests, which remains poorly understood, particularly for the production and survival of seedlings in subsequent generations. To understand the long-term impacts of logging and restoration we tracked the diversity, survival and traits of seedlings that germinated immediately after a mast fruiting in North Borneo in unlogged and logged forests 30-35 years after logging. We monitored 5119 seedlings from germination for ~1.5 years across a mixed landscape of unlogged forests (ULs), naturally regenerating logged forests (NR) and actively restored logged forests via rehabilitative silvicultural treatments (AR), 15-27 years after restoration. We measured 14 leaf, root and biomass allocation traits on 399 seedlings from 15 species. Soon after fruiting, UL and AR forests had higher seedling densities than NR forest, but survival was the lowest in AR forests in the first 6 months. Community composition differed among forest types; AR and NR forests had lower species richness and lower evenness than UL forests by 5-6 months post-mast but did not differ between them. Differences in community composition altered community-weighted mean trait values across forest types, with higher root biomass allocation in NR relative to UL forest. Traits influenced mortality ~3 months post-mast, with more acquisitive traits and relative aboveground investment favoured in AR forests relative to UL forests. Our findings of reduced seedling survival and diversity suggest long time lags in post-logging recruitment, particularly for some taxa. Active restoration of logged forests recovers initial seedling production, but elevated mortality in AR forests lowers the efficacy of active restoration to enhance recruitment or diversity of seedling communities. This suggests current active restoration practices may fail to overcome barriers to regeneration in logged forests, which may drive long-term changes in future forest plant communities.


A restauração ativa por meio de tratamentos silviculturais (plantio de enriquecimento, corte de trepadeiras e desbaste) é considerada uma intervenção importante em florestas com exploração de madeira. No entanto, sua capacidade de melhorar a regeneração, essencial para a recuperação de longo prazo das florestas exploradas, permanece pouco compreendida, especialmente no que diz respeito à produção e sobrevivência de mudas em gerações subsequentes. Para compreender os impactos de longo prazo da exploração madeireira e da restauração, acompanhamos a diversidade, sobrevivência e características de plântulas que germinaram imediatamente após uma frutificação em massa no norte de Bornéu, em florestas com e sem exploração de madeira, 30-35 anos após o fim da extração. Monitoramos 5119 mudas desde a germinação por aproximadamente 1,5 anos em uma paisagem mista de florestas não exploradas (UL), florestas exploradas em regeneração natural (NR) e florestas exploradas restauradas ativamente por meio de tratamentos silviculturais de reabilitação (AR), 15-27 anos após a restauração. Medimos 14 traços funcionais de folhas, raízes e alocação de biomassa em 399 mudas de 15 espécies. Logo após a frutificação, as florestas UL e AR apresentaram densidades de mudas mais altas do que as florestas NR, mas a sobrevivência foi mais baixa nas florestas AR nos primeiros seis meses. A composição da comunidade diferiu entre os tipos de floresta; as florestas AR e NR teviram menor riqueza de espécies e menor equidade do que as florestas UL 5-6 meses após a frutificação, mas não diferiram entre si. As diferenças na composição da comunidade alteraram os valores de média ponderada pela comunidade das características entre os tipos de floresta com maior alocação de biomassa radicular nas florestas NR em relação às florestas UL. As características influenciaram a mortalidade aproximadamente 3 meses após a frutificação, com traços mais aquisitivos maior investimento em biomassa relativa acima do solo nas florestas AR em relação às florestas UL. Nossas descobertas de redução na sobrevivência e diversidade de plântulas sugerem que há longos retardos no recrutamento após o fim da exploração de madeira, particularmente para alguns táxons. A restauração ativa de florestas exploradas recupera a produção inicial de plântulas, mas a mortalidade elevada nas florestas AR diminui a eficácia da restauração ativa no melhorio do recrutamento e da diversidade das comunidades de mudas. Isso sugere que as práticas atuais de restauração ativa podem não superar as barreiras à regeneração em florestas exploradas, o que pode levar a mudanças de longo prazo nas comunidades florestais no futuro.


Assuntos
Agricultura Florestal , Árvores , Florestas , Plântula , Germinação , Clima Tropical
2.
J Environ Manage ; 314: 115094, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468435

RESUMO

Selective logging is pervasive across the tropics and unsustainable logging depletes forest biodiversity and carbon stocks. Improving the sustainability of logging will be crucial for meeting climate targets. Carbon-based payment for ecosystem service schemes, including REDD+, give economic value to standing forests and can protect them from degradation, but only if the revenue from carbon payments is greater than the opportunity cost of forgone or reduced logging. We currently lack understanding of whether carbon payments are feasible for protecting Amazonian forests from logging, despite the Amazon holding the largest unexploited timber reserves and an expanding logging sector. Using financial data and inventories of >660,000 trees covering 52,000 ha of Brazilian forest concessions, we estimate the carbon price required to protect forests from logging. We estimate that a carbon price of $7.90 per tCO2 is sufficient to match the opportunity costs of all logging and fund protection of primary forest. Alternatively, improving the sustainability of logging operations by ensuring a greater proportion of trees are left uncut requires only slightly higher investments of $7.97-10.45 per tCO2. These prices fall well below the current compliance market rate and demonstrate a cost-effective opportunity to safeguard large tracts of the Amazon rainforest from further degradation.


Assuntos
Carbono , Agricultura Florestal , Conservação dos Recursos Naturais , Ecossistema , Florestas , Árvores , Clima Tropical
3.
Glob Chang Biol ; 27(10): 2225-2240, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33462919

RESUMO

Soil respiration is the largest carbon efflux from the terrestrial ecosystem to the atmosphere, and selective logging influences soil respiration via changes in abiotic (temperature, moisture) and biotic (biomass, productivity, quantity and quality of necromass inputs) drivers. Logged forests are a predominant feature of the tropical forest landscape, their area exceeding that of intact forest. We quantified both total and component (root, mycorrhiza, litter, and soil organic matter, SOM) soil respiration in logged (n = 5) and old-growth (n = 6) forest plots in Malaysian Borneo, a region which is a global hotspot for emission from forest degradation. We constructed a detailed below-ground carbon budget including organic carbon inputs into the system via litterfall and root turnover. Total soil respiration was significantly higher in logged forests than in old-growth forests (14.3 ± 0.23 and 12.7 ± 0.60 Mg C ha-1  year-1 , respectively, p = 0.037). This was mainly due to the higher SOM respiration in logged forests (55 ± 3.1% of the total respiration in logged forests vs. 50 ± 3.0% in old-growth forests). In old-growth forests, annual SOM respiration was equal to the organic carbon inputs into the soil (difference between SOM respiration and inputs 0.18 Mg C ha-1  year-1 , with 90% confidence intervals of -0.41 and 0.74 Mg C ha-1  year-1 ), indicating that the system is in equilibrium, while in logged forests SOM respiration exceeded the inputs by 4.2 Mg C ha-1  year-1 (90% CI of 3.6 and 4.9 Mg C ha-1  year-1 ), indicating that the soil is losing carbon. These results contribute towards understanding the impact of logging on below-ground carbon dynamics, which is one of the key uncertainties in estimating emissions from forest degradation. This study demonstrates how significant perturbation of the below-ground carbon balance, and consequent net soil carbon emissions, can persist for decades after a logging event in tropical forests.


Assuntos
Carbono , Solo , Bornéu , Ecossistema , Respiração , Árvores
4.
J Anim Ecol ; 89(10): 2222-2234, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535926

RESUMO

Selective logging is the dominant form of human disturbance in tropical forests, driving changes in the abundance of vertebrate and invertebrate populations relative to undisturbed old-growth forests. A key unresolved question is understanding which physiological mechanisms underlie different responses of species and functional groups to selective logging. Regulation of oxidative status is thought to be one major physiological mechanism underlying the capability of species to cope with environmental changes. Using a correlational cross-sectional approach, we compared a number of oxidative status markers among 15 understorey bird species in unlogged and selectively logged forest in Borneo in relation to their feeding guild. We then tested how variation of markers between forest types was associated with that in population abundance. Birds living in logged forests had a higher activity of the antioxidant enzyme superoxide dismutase and a different regulation of the glutathione cycle compared to conspecific birds in unlogged forest. However, neither oxidative damage nor oxidized glutathione differed between forest types. We also found that omnivores and insectivores differed significantly in all markers related to the key cellular antioxidant glutathione irrespective of the forest type. Species with higher levels of certain antioxidant markers in a given type of forest were less abundant in that forest type compared to the other. Our results suggest that there was little long-term effect of logging (last logging rotation occurred ~15 years prior to the study) on the oxidative status of understorey bird species. However, it is unclear if this was owing to plasticity or evolutionary change. Our correlative results also point to a potential negative association between some antioxidants and population abundance irrespective of the forest type.


Assuntos
Biodiversidade , Agricultura Florestal , Animais , Aves , Bornéu , Estudos Transversais , Florestas , Estresse Oxidativo , Árvores , Clima Tropical
5.
Mycorrhiza ; 30(4): 467-474, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32556666

RESUMO

Rhizopogon vesiculosus and R. vinicolor are sister fungal species; they form ectomycorrhizas exclusively with Douglas-fir roots, and they are important in forming relatively large mycorrhizal networks, but they may be vulnerable to disturbance caused by logging practices. The main objective was to determine the resilience of mycorrhizal networks 25 years following removal of large hub trees. We predicted that the targeted removal of mature trees would reduce network connectedness compared with a non-harvested neighboring forest. Rhizopogon vesiculosus was nearly absent in the non-harvested plots, whereas both species were prominent in the harvested plots. Initially, network analysis was based only on networks formed by R. vinicolor because they were well represented in both treatments. These analyses showed that the R. vinicolor-Douglas-fir MN was more densely linked in the non-harvested plots than the harvested plots. When we accounted for differences in link and node density, there was still an edge difference and a greater vulnerability to fragmentation in harvested forests than in non-harvested forests. When both Rhizopogon sister species were included in the analysis, both treatments had similar connectivity and limited vulnerability to fragmentation. This suggests that when these forests transition from a regenerating to a non-regenerating state, the Rhizopogon network will lose R. vesiculosus but will maintain link density due to the colonization with R. vinicolor.


Assuntos
Basidiomycota , Micorrizas , Pseudotsuga , Florestas , Árvores
6.
J Anim Ecol ; 88(1): 125-137, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30178485

RESUMO

The assembly of species communities at local scales is thought to be driven by environmental filtering, species interactions and spatial processes such as dispersal limitation. Little is known about how the relative balance of these drivers of community assembly changes along environmental gradients, especially man-made environmental gradients associated with land-use change. Using concurrent camera- and live-trapping, we investigated the local-scale assembly of mammal communities along a gradient of land-use intensity (old-growth forest, logged forest and oil palm plantations) in Borneo. We hypothesised that increasing land-use intensity would lead to an increasing dominance of environmental control over spatial processes in community assembly. Additionally, we hypothesised that competitive interactions among species might reduce in concert with declines in α-diversity (previously documented) along the land-use gradient. To test our first hypothesis, we partitioned community variance into the fractions explained by environmental and spatial variables. To test our second hypothesis, we used probabilistic models of expected species co-occurrence patterns, in particular focussing on the prevalence of spatial avoidance between species. Spatial avoidance might indicate competition, but might also be due to divergent habitat preferences. We found patterns that are consistent with a shift in the fundamental mechanics governing local community assembly. In support of our first hypothesis, the importance of spatial processes (dispersal limitation and fine-scale patterns of home-ranging) appeared to decrease from low to high intensity land-uses, whilst environmental control increased in importance (in particular due to fine-scale habitat structure). Support for our second hypothesis was weak: whilst we found that the prevalence of spatial avoidance decreased along the land-use gradient, in particular between congeneric species pairs most likely to be in competition, few instances of spatial avoidance were detected in any land-use, and most were likely due to divergent habitat preferences. The widespread changes in land-use occurring in the tropics might be altering not just the biodiversity found in landscapes, but also the fundamental mechanics governing the local assembly of communities. A better understanding of these mechanics, for a range of taxa, could underpin more effective conservation and management of threatened tropical landscapes.


Assuntos
Biodiversidade , Floresta Úmida , Animais , Bornéu , Florestas , Mamíferos
7.
Conserv Biol ; 33(1): 66-75, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29972268

RESUMO

Tropical forests are experiencing enormous threats from deforestation and habitat degradation. Much knowledge of the impacts of these land-use changes on tropical species comes from studies examining patterns of richness and abundance. Demographic vital rates (survival, reproduction, and movement) can also be affected by land-use change in a way that increases species vulnerability to extirpation, but in many cases these impacts may not be manifested in short-term changes in abundance or species richness. We conducted a literature review to assess current knowledge and research effort concerning how land-use change affects species vital rates in tropical forest vertebrates. We found a general paucity of empirical research on demography across taxa and regions, with some biases toward mammals and birds and land-use transitions, including fragmentation and agriculture. There is also considerable between-species variation in demographic responses to land-use change, which could reflect trait-based differences in species sensitivity, complex context dependencies (e.g., between-region variation), or inconsistency in methods used in studies. Efforts to improve understanding of anthropogenic impacts on species demography are underway, but there is a need for increased research effort to fill knowledge gaps in understudied tropical regions and taxa. The lack of information on demographic impacts of anthropogenic disturbance makes it difficult to draw definite conclusions about the magnitude of threats to tropical ecosystems under anthropogenic pressures. Thus, determining conservation priorities and improving conservation effectiveness remains a challenge.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Aves , Florestas , Clima Tropical
8.
BMC Ecol ; 19(1): 9, 2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30738432

RESUMO

BACKGROUND: Riparian forests surrounding streams host high biodiversity values, but are threatened by clear-cut logging. Narrow buffer strips of about 15 m are commonly left between the stream and the clear-cut, but studies suggest that the buffer width should be at least 30 m to protect riparian plant communities. Moreover, selective logging is often allowed on the buffer strips in order to increase economic gain. We used an experiment of 43 riparian sites where buffer strip width and selective logging within the strip were manipulated and supplemented with unlogged control sites. We report the short-term changes in the community composition of vascular plants and mosses near the stream (0-15 m distance). RESULTS: 15-meter buffers are not enough to protect the vascular plant communities from changes caused by a clear-cut irrespective of the selective logging on the buffer strip. For moss communities 15-m buffers were not enough if they were selectively logged. Relative to the control sites, we observed no significant changes in community composition of vascular plants or mosses in the sites with 30-m buffer strips, whether selectively logged or not. CONCLUSIONS: We conclude that buffer strips of 15 m are not sufficient to protect streamside plant communities even in the short term, but that buffers of 30 m should be left on both sides of the stream. Selective logging appears not to have effects on buffers that are at least 30 m wide. Thus, it may be more reasonable to increase buffer width and to allow selective logging on the wider buffer in order to compensate for the economic losses than to leave all trees on a narrow and ecologically insufficient buffer.


Assuntos
Biodiversidade , Agricultura Florestal/métodos , Plantas , Árvores , Conservação dos Recursos Naturais/economia , Finlândia , Agricultura Florestal/economia , Rios
9.
Glob Chang Biol ; 24(3): 1267-1278, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29052295

RESUMO

Tropical rainforests are subject to extensive degradation by commercial selective logging. Despite pervasive changes to forest structure, selectively logged forests represent vital refugia for global biodiversity. The ability of these forests to buffer temperature-sensitive species from climate warming will be an important determinant of their future conservation value, although this topic remains largely unexplored. Thermal buffering potential is broadly determined by: (i) the difference between the "macroclimate" (climate at a local scale, m to ha) and the "microclimate" (climate at a fine-scale, mm to m, that is distinct from the macroclimate); (ii) thermal stability of microclimates (e.g. variation in daily temperatures); and (iii) the availability of microclimates to organisms. We compared these metrics in undisturbed primary forest and intensively logged forest on Borneo, using thermal images to capture cool microclimates on the surface of the forest floor, and information from dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences in forest structure remained 9-12 years after repeated selective logging, we found that logging activity had very little effect on thermal buffering, in terms of macroclimate and microclimate temperatures, and the overall availability of microclimates. For 1°C warming in the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly more in primary forest than in logged forest, but the effect amounted to <0.1°C difference between forest types. We therefore conclude that selectively logged forests are similar to primary forests in their potential for thermal buffering, and subsequent ability to retain temperature-sensitive species under climate change. Selectively logged forests can play a crucial role in the long-term maintenance of global biodiversity.


Assuntos
Agricultura Florestal , Microclima , Floresta Úmida , Clima Tropical , Biodiversidade , Bornéu , Árvores
10.
Glob Chang Biol ; 24(11): 5243-5258, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30246358

RESUMO

Local-scale microclimatic conditions in forest understoreys play a key role in shaping the composition, diversity and function of these ecosystems. Consequently, understanding what drives variation in forest microclimate is critical to forecasting ecosystem responses to global change, particularly in the tropics where many species already operate close to their thermal limits and rapid land-use transformation is profoundly altering local environments. Yet our ability to characterize forest microclimate at ecologically meaningful scales remains limited, as understorey conditions cannot be directly measured from outside the canopy. To address this challenge, we established a network of microclimate sensors across a land-use intensity gradient spanning from old-growth forests to oil-palm plantations in Borneo. We then combined these observations with high-resolution airborne laser scanning data to characterize how topography and canopy structure shape variation in microclimate both locally and across the landscape. In the processes, we generated high-resolution microclimate surfaces spanning over 350 km2 , which we used to explore the potential impacts of habitat degradation on forest regeneration under both current and future climate scenarios. We found that topography and vegetation structure were strong predictors of local microclimate, with elevation and terrain curvature primarily constraining daily mean temperatures and vapour pressure deficit (VPD), whereas canopy height had a clear dampening effect on microclimate extremes. This buffering effect was particularly pronounced on wind-exposed slopes but tended to saturate once canopy height exceeded 20 m-suggesting that despite intensive logging, secondary forests remain largely thermally buffered. Nonetheless, at a landscape-scale microclimate was highly heterogeneous, with maximum daily temperatures ranging between 24.2 and 37.2°C and VPD spanning two orders of magnitude. Based on this, we estimate that by the end of the century forest regeneration could be hampered in degraded secondary forests that characterize much of Borneo's lowlands if temperatures continue to rise following projected trends.


Assuntos
Florestas , Microclima , Clima Tropical , Bornéu , Ecossistema , Aquecimento Global , Humanos , Plantas , Temperatura , Pressão de Vapor
11.
Ecol Appl ; 28(8): 1998-2010, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29999560

RESUMO

Selective logging remains a widespread practice in tropical forests, yet the long-term effects of timber harvest on juvenile tree (i.e., sapling) recruitment across the hundreds of species occurring in most tropical forests remain difficult to predict. This uncertainty could potentially exacerbate threats to some of the thousands of timber-valuable tree species in the Amazon. Our objective was to determine to what extent long-term responses of tree species regeneration in logged forests can be explained by their functional traits. We integrate functional trait data for 13 leaf, stem, and seed traits from 25 canopy tree species with a range of life histories, such as the pioneer Goupia glabra and the shade-tolerant Iryanthera hostmannii, together with over 30 yr of sapling monitoring in permanent plots spanning a gradient of harvest intensity at the Paracou Forest Disturbance Experiment (PFDE), French Guiana. We anticipated that more intensive logging would increase recruitment of pioneer species with higher specific leaf area, lower wood densities, and smaller seeds, due to the removal of canopy trees. We define a recruitment response metric to compare sapling regeneration to timber harvest intensity across species. Although not statistically significant, sapling recruitment decreased with logging intensity for eight of 23 species and these species tended to have large seeds and dense wood. A generalized linear mixed model fit using specific leaf area, seed mass, and twig density data explained about 45% of the variability in sapling dynamics. Effects of specific leaf area outweighed those of seed mass and wood density in explaining recruitment dynamics of the sapling community in response to increasing logging intensity. The most intense treatment at the PFDE, which includes stand thinning of non-timber-valuable adult trees and poison-girdling for competitive release, showed evidence of shifting community composition in sapling regeneration at the 30-yr mark, toward species with less dense wood, lighter seeds, and higher specific leaf area. Our results indicate that high-intensity logging can have lasting effects on stand regeneration dynamics and that functional traits can help simplify general trends of sapling recruitment for highly diverse logged tropical forests.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Árvores/fisiologia , Guiana Francesa , Características de História de Vida , Dinâmica Populacional
12.
Ecol Appl ; 27(6): 1932-1945, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28543995

RESUMO

Selective logging is the most prevalent land-use change in the tropics. Despite the resulting degradation of forest structure, selectively logged forests still harbor a substantial amount of biodiversity leading to suggestions that their protection is the next best alternative to conserving primary, old-growth forests. Restoring carbon stocks under Reducing Emissions from Deforestation and Forest Degradation (REDD+) schemes is a potential method for obtaining funding to protect logged forests, via enrichment planting and liberation cutting of vines. This study investigates the impacts of restoring logged forests in Borneo on avian phylogenetic diversity, the total evolutionary history shared across all species within a community, and on functional diversity, with important implications for the protection of evolutionarily unique species and the provision of many ecosystem services. Overall and understorey avifaunal communities were studied using point count and mist netting surveys, respectively. Restoration caused a significant loss in phylogenetic diversity and MPD (mean pairwise distance) leaving an overall bird community of less total evolutionary history and more closely related species compared to unlogged forests, while the understorey bird community had MNTD (mean nearest taxon distance) that returned toward the lower levels found in a primary forest, indicating more closely related species pairs. The overall bird community experienced a significant loss of functional strategies and species with more specialized traits in restored forests compared to that of unlogged forests, which led to functional clustering in the community. Restoration also led to a reduction in functional richness and thus niches occupied in the understorey bird community compared to unlogged forests. While there are additional benefits of restoration for forest regeneration, carbon sequestration, future timber harvests, and potentially reduced threat of forest conversion, this must be weighed against the apparent loss of phylogenetic and functional diversity from unlogged forest levels, making the biodiversity-friendliness of carbon sequestration schemes questionable under future REDD+ agreements. To reduce perverse biodiversity outcomes, it is important to focus restoration only on the most degraded areas or at reduced intensity where breaks between regimes are incorporated.


Assuntos
Biodiversidade , Aves , Conservação dos Recursos Naturais , Agricultura Florestal , Animais , Bornéu , Malásia
13.
Biol Conserv ; 205: 85-92, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28133389

RESUMO

The demand for timber products is facilitating the degradation and opening up of large areas of intact habitats rich in biodiversity. Logging creates an extensive network of access roads within the forest, yet these are commonly ignored or excluded when assessing impacts of logging on forest biodiversity. Here we determine the impact of these roads on the overall condition of selectively logged forests in Borneo, Southeast Asia. Focusing on dung beetles along > 40 km logging roads we determine: (i) the magnitude and extent of edge effects alongside logging roads; (ii) whether vegetation characteristics can explain patterns in dung beetle communities, and; (iii) how the inclusion of road edge forest impacts dung beetle assemblages within the overall logged landscape. We found that while vegetation structure was significantly affected up to 34 m from the road edge, impacts on dung beetle communities penetrated much further and were discernible up to 170 m into the forest interior. We found larger species and particularly tunnelling species responded more than other functional groups which were also influenced by micro-habitat variation. We provide important new insights into the long-term ecological impacts of tropical logging. We also support calls for improved logging road design both during and after timber extraction to conserve more effectively biodiversity in production forests, for instance, by considering the minimum volume of timber, per unit length of logging road needed to justify road construction. In particular, we suggest that governments and certification bodies need to highlight more clearly the biodiversity and environmental impacts of logging roads.

14.
Am J Primatol ; 79(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28563902

RESUMO

From alleles to ecosystems and landscapes, anthropogenic activity continues to affect the environment, with particularly adverse effects on biodiversity hotspots such as Madagascar. Selective logging has been proposed as a "win-win" conservation strategy, yet its effects on different components of biodiversity are still not fully understood. Here we examine biotic factors (i.e., dietary differences) that may be driving differences in biogeochemical stocks between disturbed and undisturbed forests. We present the stable nitrogen (δ15 N) and carbon (δ13 C) isotope composition of hair from the lemur Propithecus edwardsi and of whole bodies of its obligate ectoparasite, the louse-fly Allobosca crassipes, from sites in Ranomafana National Park (RNP) that are comparable except for the history of logging and subsequent forest regeneration. P. edwardsi and A. crassipes from the disturbed (i.e., heavily selectively logged) site are lower in 15 N and 13 C relative to P. edwardsi and A. crassipes from sites that were minimally selectively logged or not commercially logged at all. There is a ∼3‰ decrease in 15 N between disturbed and undisturbed sites that corresponds to a difference of nearly a full trophic level. Flowers from Bakerella clavata, a staple food source for P. edwardsi in disturbed habitats and a fallback food for P. edwardsi in primary forests, were also analyzed isotopically. B. clavata is δ15 N-depleted in both disturbed and undisturbed sites. Data from longitudinal behavioral surveys of P. edwardsi in RNP and other forests in eastern Madagascar point to significant differences in consumption patterns of B. clavata, with P. edwardsi in disturbed forests consuming almost twice as much of this plant. Depletion of 15 N in animal tissues is a complex issue, but likely the result of the interaction of physiological and ecological factors. Anthropogenic disturbance in RNP from selective logging has had both biotic and biogeochemical effects that are observable trophically.


Assuntos
Interações Hospedeiro-Parasita , Lemur , Ftirápteros , Strepsirhini/parasitologia , Animais , Dieta , Dípteros , Florestas , Madagáscar , Parques Recreativos , Solo/química
15.
Int J Appl Earth Obs Geoinf ; 61: 70-80, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29367838

RESUMO

Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000-2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.

16.
Proc Biol Sci ; 283(1844)2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27928046

RESUMO

One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the 'insurance hypothesis' predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning.


Assuntos
Biodiversidade , Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , Malásia , Plântula/crescimento & desenvolvimento
17.
Proc Biol Sci ; 283(1826): 20153008, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26936241

RESUMO

Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'.


Assuntos
Biodiversidade , Agricultura Florestal , Florestas , Árvores/fisiologia , Bornéu , Malásia , Clima Tropical
18.
Mol Ecol ; 25(10): 2244-57, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26994316

RESUMO

Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.


Assuntos
Agricultura , Agricultura Florestal , Microbiota , Microbiologia do Solo , Arecaceae/crescimento & desenvolvimento , Bactérias/classificação , Biodiversidade , Bornéu , Conservação dos Recursos Naturais , Florestas , Metagenoma , RNA Ribossômico 16S/genética
19.
Ecol Appl ; 26(5): 1409-1420, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27755763

RESUMO

Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that ß-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected ß-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and ß-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as ß-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); ß-diversity was quantified by comparing observed ß-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the ß-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant ß-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The ß-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to ß-diversity at a range of spatial grains.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Atividades Humanas , Mamíferos , Animais , Humanos
20.
Conserv Biol ; 29(1): 110-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25196079

RESUMO

Humans influence tropical rainforest animals directly via exploitation and indirectly via habitat disturbance. Bushmeat hunting and logging occur extensively in tropical forests and have large effects on particular species. But how they alter animal diversity across landscape scales and whether their impacts are correlated across species remain less known. We used spatially widespread measurements of mammal occurrence across Malaysian Borneo and recently developed multispecies hierarchical models to assess the species richness of medium- to large-bodied terrestrial mammals while accounting for imperfect detection of all species. Hunting was associated with 31% lower species richness. Moreover, hunting remained high even where richness was very low, highlighting that hunting pressure persisted even in chronically overhunted areas. Newly logged sites had 11% lower species richness than unlogged sites, but sites logged >10 years previously had richness levels similar to those in old-growth forest. Hunting was a more serious long-term threat than logging for 91% of primate and ungulate species. Hunting and logging impacts across species were not correlated across taxa. Negative impacts of hunting were the greatest for common mammalian species, but commonness versus rarity was not related to species-specific impacts of logging. Direct human impacts appeared highly persistent and lead to defaunation of certain areas. These impacts were particularly severe for species of ecological importance as seed dispersers and herbivores. Indirect impacts were also strong but appeared to attenuate more rapidly than previously thought. The lack of correlation between direct and indirect impacts across species highlights that multifaceted conservation strategies may be needed for mammal conservation in tropical rainforests, Earth's most biodiverse ecosystems.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Agricultura Florestal , Mamíferos/fisiologia , Animais , Bornéu , Atividades Humanas , Malásia , Densidade Demográfica , Floresta Úmida , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA