RESUMO
Postsurgical adhesion (PA) is a common and serious postoperative complication that affects millions of patients worldwide. However, current commercial barrier materials are insufficient to inhibit diverse pathological factors during PA formation, and thus, highly bioactive materials are needed. Here, this work designs an injectable multifunctional composite hydrogel that can serve as a combination therapy for preventing PA. In brief, this work reveals that multiple pathological events, such as chronic inflammatory and fibrotic processes, contribute to adhesion formation in vivo, and such processes can not be attenuated by barrier material (e.g., hydrogel) alone treatments. To solve this limitation, this work designs a composite hydrogel made of the cationic self-assembling peptide KLD2R and TGF-ß receptor inhibitor (TGF-ßRi)-loaded mesenchymal stem cell-derived nanovesicles (MSC-NVs). The resulting composite hydrogel displays multiple functions, including physical separation of the injured tissue areas, antibacterial effects, and local delivery and sustained release of anti-inflammatory MSC-NVs and antifibrotic TGF-ßRi. As a result, this composite hydrogel effectively inhibited local inflammation, fibrosis and adhesion formation in vivo. Moreover, the hydrogel also exhibits good biocompatibility and biodegradability in vivo. Together, the results highlight that this "all-in-one" composite hydrogel strategy may provide insights into designing advanced therapies for many types of tissue injury.
Assuntos
Hidrogéis , Inflamação , Humanos , Hidrogéis/farmacologia , Aderências Teciduais/prevenção & controle , Aderências Teciduais/patologiaRESUMO
Protein clustering is a ubiquitous event in diverse cellular processes. Self-association of proteins triggers recruitment of downstream proteins to regulate cellular signaling. To investigate the interactions in detail, chemical biology tools to identify proteins recruited to defined assemblies are required. Here, we exploit an identification of proteins recruited in artificial granules (IPRAG) platform that combines intracellular Y15-based supramolecule construction with a proximity labeling method. We validated the IPRAG tool using Nck1 as a target bait protein. We constructed Nck1-tethering granules, labeled the recruited proteins with biotin, and analyzed them by LC-MS/MS. As a result, we successfully identified proteins that directly or indirectly interact with Nck1.
Assuntos
Proteínas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Biotina/químicaRESUMO
BACKGROUND AND AIM: Delayed endoscopic sphincterotomy-related bleeding (ES bleeding) is an unavoidable adverse event (AE) that can have serious ramifications. Intraoperative ES bleeding, which stops spontaneously in most cases, is a known risk factor for delayed bleeding. This study aimed to examine the preventive effect of a novel self-assembling peptide (SAP) for delayed ES bleeding in patients who attained spontaneous hemostasis after intraoperative ES bleeding. METHODS: A total of 1507 patients met the eligibility criteria for inclusion in this study. The rates of delayed ES bleeding and AE besides bleeding were compared between patients administered the SAP (SAP group) and those who were simply observed after spontaneous hemostasis of intraoperative ES bleeding (control group). Propensity score matching was performed to adjust for differences between the groups. RESULTS: The rate of delayed ES bleeding was significantly lower in the SAP group than that in the control group (0.9% vs 3.8%, P = 0.044). The rates of AEs other than bleeding were 2.4% and 3.8% in the SAP and control groups, respectively, and the difference lacked statistical significance (P = 0.481). Multivariate analysis revealed that the use of SAP was significantly associated with a lower frequency of delayed ES bleeding (odds ratio, 0.35; 95% confidence interval, 0.13-0.98; P = 0.047). CONCLUSIONS: Self-assembling peptide may be a simple, safe, and useful way to reduce the risk of delayed ES bleeding in patients who experienced intraoperative ES bleeding and obtained subsequent spontaneous hemostasis.
Assuntos
Hidrogéis , Peptídeos , Pontuação de Propensão , Esfinterotomia Endoscópica , Humanos , Masculino , Feminino , Esfinterotomia Endoscópica/efeitos adversos , Idoso , Pessoa de Meia-Idade , Peptídeos/administração & dosagem , Fatores de Tempo , Hemorragia Pós-Operatória/prevenção & controle , Hemorragia Pós-Operatória/etiologia , Idoso de 80 Anos ou mais , Fatores de RiscoRESUMO
The limited cardiomyocyte proliferation is insufficient for repair of the myocardium. Therefore, activating cardiomyocyte proliferation might be a reasonable option for myocardial regeneration. Here, we investigated effect of retinoic acid (RA) on inducing adult cardiomyocyte proliferation and assessed efficacy of self-assembling peptide (SAP)-released RA in activating regeneration of the infarcted myocardium. Effect of RA on inducing cardiomyocyte proliferation was examined with the isolated cardiomyocytes. Expression of the cell cycle-associated genes and paracrine factors in the infarcted myocardium was examined at one week after treatment with SAP-carried RA. Cardiomyocyte proliferation, myocardial regeneration and improvement of cardiac function were assessed at four weeks after treatment. In the adult rat myocardium, expression of RA synthetase gene Raldh2 and RA concentration were decreased significantly. After treatment with RA, the proliferated cardiomyocytes were increased. The formulated SAP could sustainedly release RA. After treatment with SAP-carried RA, expression of the pro-proliferative genes in cell cycle and paracrine factors in the infarcted myocardium were up-regulated. Myocardial regeneration was enhanced, and cardiac function was improved significantly. These results demonstrate that RA can induce adult cardiomyocytes to proliferate effectively. The sustained release of RA with SAP is a promise strategy to enhance repair of the infarcted myocardium.
Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Miocárdio/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Proliferação de CélulasRESUMO
INTRODUCTION: This study aimed to investigate the remineralisation effect of combined use of a bioinspired self-assembling peptide (P26) and fluoride varnish on artificial early enamel caries lesions. METHODS: Bovine enamel blocks with artificial early enamel caries lesions were prepared. The blocks were randomly allocated to four experimental groups to receive the following treatments: A = P26 + fluoride varnish, B = P26, C = fluoride varnish, and D. distilled water (negative control). The treated blocks were subjected to pH cycling. Enamel blocks were collected at time points of 7 days (d7) and 21 days (d21). The mineral gain, elemental analysis and crystal characteristics of the caries lesion were assessed by micro-computed tomography, scanning electron microscopy with energy dispersive X-ray and X-ray diffraction (XRD), respectively. RESULTS: The mean ± standard deviation of mineral gain of group A to D were 17.4 ± 4.2%, 10.7 ± 2.2%, 10.1 ± 1.2%, and 6.8 ± 0.5% at d7, respectively, and 15.2 ± 2.6%, 8.7 ± 3.1%, 9.7 ± 1.2%, and 7.8 ± 2.3% at d21, respectively. A significant higher mineral gain was observed in group A when compared to other groups at both d7 and d21 (p < 0.05). The calcium-to-phosphate ratio remained consistent across all groups, ranging between 1.2 and 1.4. XRD analysis indicated that crystal composition on the surfaces was apatite for all groups. CONCLUSION: In conclusion, the present study provided a first indication of better remineralisation effects of the combined use of the bioinspired self-assembling peptide P26 and fluoride varnish compared to the effects of the respective individual uses of P26 or fluoride varnish.
Assuntos
Cariostáticos , Cárie Dentária , Esmalte Dentário , Fluoretos Tópicos , Microscopia Eletrônica de Varredura , Remineralização Dentária , Difração de Raios X , Remineralização Dentária/métodos , Animais , Cárie Dentária/prevenção & controle , Bovinos , Esmalte Dentário/efeitos dos fármacos , Fluoretos Tópicos/farmacologia , Técnicas In Vitro , Cariostáticos/farmacologia , Cariostáticos/química , Cariostáticos/uso terapêutico , Microtomografia por Raio-X , Peptídeos , Espectrometria por Raios X , Concentração de Íons de Hidrogênio , Fluoreto de Sódio/farmacologia , Fluoreto de Sódio/uso terapêuticoRESUMO
OBJECTIVES: The present trial's aim was to compare the remineralization potential of self-assembling peptide P11-4 combined with fluoride to that of fluoride varnish. MATERIALS AND METHODS: Twenty-eight participants with 58 incipient carious lesions were enrolled in the present trial. Participants were randomly divided into two groups with 14 participants and 29 incipient lesions in each group. Patients were assigned either to self-assembling peptide combined with fluoride (Curodont Repair Fluoride Plus™) or sodium fluoride varnish (NaF, Bifluorid 10) groups. Both agents were applied according to the manufacturer's instructions on non-cavitated incipient carious lesions. Lesions were assessed by two calibrated and blinded assessors at baseline, and after one-, three- and six-months using a laser fluorescence device (DIAGNOdent). RESULTS: Although laser fluorescence scores significantly improved in both groups over time (p < 0.05), no notable differences were evident between both groups at one-month (p > 0.05). Yet, at three- and six-months statistically lower laser fluorescence readings were evident in the self-assembling peptide combined with fluoride group in comparison to the fluoride alone group (p < 0.05). There was 60% less risk for caries progression for Curodont Repair Fluoride Plus™ when compared to NaF varnish after six months. Self-assembling peptide combined with fluoride was able to change 65.5% of non-cavitated carious lesions from DIAGNOdent score 3 (11-20) to score 1 (0-4). Fluoride varnish was able to change 13.8% of the lesions from score 3 to score 1 after six months. CONCLUSIONS: The self-assembling peptide combined with fluoride varnish showed higher remineralization potential than fluoride varnish alone for incipient carious lesions over a six-months follow up. CLINICAL RELEVANCE: The combination of self-assembling peptide P11-4 and fluoride could offer a new tool in managing incipient carious lesions.
Assuntos
Cariostáticos , Cárie Dentária , Fluoretos Tópicos , Fluoreto de Sódio , Remineralização Dentária , Humanos , Feminino , Remineralização Dentária/métodos , Fluoretos Tópicos/uso terapêutico , Masculino , Fluoreto de Sódio/uso terapêutico , Cariostáticos/uso terapêutico , Adulto , Resultado do Tratamento , Pessoa de Meia-Idade , OligopeptídeosRESUMO
OBJECTIVE: The aim of this study was to investigate the effect of remineralization agents such as fluoride varnish and P11-4, alone and in combination with Er: YAG laser, on in-vitro hard tissue repair in artificial enamel lesions. MATERIALS AND METHODS: A total of sixty enamel surfaces of 4 × 5 mm in size were created on both the buccal and lingual sides of thirty extracted wisdom teeth. Remineralization agents were applied to the specimens that were grouped as follows: Group 1, control; Group 2, fluoride varnish (FV); Group 3, P11-4; Group 4, laser; Group 5, laser + FV; and Group 6, laser + P11-4. The fluorescence level was determined with DiagnoDent. The enamel mineral density, area and volume, and caries lesion area and volume were determined with micro-computed tomography (µCT), surface features were evaluated using scanning electron microscopy (SEM), and elemental analysis was performed using energy dispersive x-ray spectroscopy (EDS) . RESULTS: For specimens treated only with self-assembling peptide P11-4, the caries lesion area (mm2) values were 38.19 and 21.62, and the caries lesion volume (mm3) values were 6.27 and 2.99, respectively for pre- and post-treatment. In combination usage of self-assembling peptide P11-4 and laser, the caries lesion area (mm2) values were 38.39 and 16.91, and the caries lesion volume (mm3) values were 11.15 and 3.64, respectively for pre- and post-treatment. In the application of the P11-4 alone and in combination with laser, there was a statistically significant decrease in DiagnoDent values, an increase in enamel volume(mm3),enamel area(mm2) and mineral density(g/cm3) values and a decrease in caries lesion volume(mm3) and area(mm2) obtained by µCT, and an increase in %Ca and %F values obtained by SEM/EDS analysis (p < 0.05). It was discovered that the samples treated with P11-4 had a considerably higher rise in the Ca/P ratio than the samples treated with FV (p < 0.05). The calcium content increased significantly more when P11-4 application was combined with laser irradiation (p < 0.05). CONCLUSIONS: The combined use of self-assembling peptide P11-4 and laser accelerated the remineralization process and increased the remineralization capacity. CLINICAL RELEVANCE: FV and P11-4, alone or in combination with laser, can be successfully used as remineralization agents in initial enamel caries.
Assuntos
Cárie Dentária , Esmalte Dentário , Fluoretos Tópicos , Lasers de Estado Sólido , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Microtomografia por Raio-X , Cárie Dentária/terapia , Humanos , Técnicas In Vitro , Lasers de Estado Sólido/uso terapêutico , Esmalte Dentário/efeitos dos fármacos , Cariostáticos , Remineralização Dentária/métodos , Propriedades de Superfície , Peptídeos , OligopeptídeosRESUMO
In this study, a cationic amphiphilic self-assembling peptide (SAP) Z23 was designed, and a simple bisphenol a (BPA) sensor, based on SAP Z23/multiwalled carbon nanotubes (Z23/MWCNTs) composite, was successfully fabricated on the surface of a glassy carbon electrode (GCE). The composite material was formed by π-π stacking interaction between the aromatic group on the hydrophobic side of Z23 and the side-wall of MWCNTs, with the charged hydrophilic group of Z23 exposed. During the electrocatalytic process of BPA, a synergistic effect was observed between Z23 and MWCNTs. The current response of the sensor based on composite material was 3.24 times that of the MWCNTs-modified electrode, which was much higher than that of the peptide-based electrode. Differential pulse voltammetry (DPV) was used to optimize the experimental conditions affecting the analytical performance of the modified electrode. Under optimal conditions, the linear range of the sensor was from 10 nM to 100 µM by amperometric measurement with sensitivity and limit of detection (LOD) at 6.569 µAµM-1cm-2 and 1.28 nM (S/N = 3), respectively. Consequently, the sensor has excellent electrochemical performance and is easy to fabricate, making it a good prospect in the field of electrochemical detection in the future.
Assuntos
Compostos Benzidrílicos , Nanocompostos , Nanotubos de Carbono , Fenóis , Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/química , Limite de Detecção , Nanocompostos/química , EletrodosRESUMO
BACKGROUND: Protein purification remains a critical need for biosciences and biotechnology. It frequently requires multiple rounds of chromatographic steps that are expensive and time-consuming. Our lab previously reported a cleavable self-aggregating tag (cSAT) scheme for streamlined protein expression and purification. The tag consists of a self-assembling peptide (SAP) and a controllable self-cleaving intein. The SAP drives the target protein into an active aggregate, then by intein-mediated cleavage, the target protein is released. Here we report a novel cSAT scheme in which the self-assembling peptide is replaced with a salt inducible self-assembling peptide. This allows a target protein to be expressed first in the soluble form, and the addition of salt then drives the target protein into the aggregated form, followed by cleavage and release. RESULTS: In this study, we used MpA (MKQLEDKIEELLSKAAMKQLEDKIEELLSK) as a second class of self-assembling peptide in the cSAT scheme. This scheme utilizes low salt concentration to keep the fusion protein soluble, while eliminating insoluble cellular matters by centrifugation. Salt then triggers MpA-mediated self-aggregation of the fusion, removing soluble background host cell proteins. Finally, intein-mediated cleavage releases the target protein into solution. As a proof-of-concept, we successfully purified four proteins and peptides (human growth hormone, 22.1 kDa; LCB3, 7.7 kDa; SpyCatcherΔN-ELP-SpyCatcherΔN, 26.2 kDa; and xylanase, 45.3 kDa) with yields ranging from 12 to 87 mg/L. This was comparable to the classical His-tag method both in yield and purity (72-97%), but without the His-tag. By using a further two-step column purification process that included ion-exchange chromatography and size-exclusion chromatography, the purity was increased to over 99%. CONCLUSION: Our results demonstrate that a salt-inducible self-assembling peptide can serve as a controllable aggregating tag, which might be advantageous in applications where soluble expression of the target protein is preferred. This work also demonstrates the potential and advantages of utilizing salt inducible self-assembling peptides for protein separation.
Assuntos
Escherichia coli , Peptídeos , Humanos , Escherichia coli/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Inteínas , Processamento de Proteína Pós-Traducional , Cloreto de Sódio/metabolismoRESUMO
BACKGROUND: Gastrointestinal bleeding (GIB) is a common and potentially fatal condition with all-cause mortality ranging from 3 to 10%. Endoscopic therapy traditionally involves mechanical, thermal, and injection therapies. Recently, self-assembling peptide (SAP) has become increasingly available in the United States. When applied to an affected area, this gel forms an extracellular matrix-type structure allowing for hemostasis. This is the first systematic review and meta-analysis to assess the safety and efficacy of this modality in GIB. METHODS: We performed a comprehensive literature search of major databases from inception to Nov 2022. The primary outcomes assessed were the success of hemostasis, rebleeding rates, and adverse events. The secondary outcomes assessed were successful hemostasis with monotherapy with SAP and combined therapy, which may include mechanical, injection, and thermal therapies. Pooled estimates were calculated using random-effects models with a 95% confidence interval (CI). RESULTS: The analysis included 7 studies with 427 patients. 34% of the patients were on anticoagulation or antiplatelet agents. SAP application was technically successful in all patients. The calculated pooled rate of successful hemostasis was 93.1% (95% confidence interval (CI) 84.7-97.0, I2 = 73.6), and rebleeding rates were 8.9% (95% CI 5.3-14.4, I2 = 55.8). The pooled rates of hemostasis with SAP monotherapy and combined therapy were similar. No adverse events were noted related to SAP. CONCLUSION: SAP appears to be a safe and effective treatment modality for patients with GIB. This modality provides an added advantage of improved visualization over the novel spray-based modalities. Further, prospective, or randomized controlled trials are needed to validate our findings.
Assuntos
Hemostase Endoscópica , Humanos , Hemostase Endoscópica/efeitos adversos , Estudos Prospectivos , Recidiva Local de Neoplasia/terapia , Hemorragia Gastrointestinal/etiologia , Peptídeos/efeitos adversosRESUMO
Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new influenza A strains. Efficient control of infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A combination of several such antigens, including the conserved region of the second subunit of the hemagglutinin (HA2), the extracellular domain of the M2 protein (M2e), and epitopes of nucleoprotein (NP), which together can elicit an antibody- and cell-mediated immune response, would be preferred for vaccine development. In this study, we obtained recombinant virus-like particles formed by an artificial self-assembling peptide (SAP) carrying two epitopes from NP, tandem copies of M2e and HA2 peptides, along with a T helper Pan DR-binding epitope (PADRE). Fusion proteins expressed in Escherichia coli self-assembled in vitro into spherical particles with a size of 15-35 nm. Immunization of mice with these particles induced strong humoral immune response against M2e and the entire virus, and lead to the formation of cytokine-secreting antigen-specific CD4+ and CD8+ effector memory T cells. Immunization provided high protection of mice against the lethal challenge with the influenza A virus. Our results show that SAP-based nanoparticles carrying conserved peptides from M2, HA, and NP proteins of the influenza A virus, as well as T helper epitope PADRE, can be used for the development of universal flu vaccines.
Assuntos
Influenza Humana , Nucleoproteínas , Animais , Camundongos , Humanos , Nucleoproteínas/genética , Hemaglutininas , Linfócitos T , Epitopos , Escherichia coli/genética , ImunidadeRESUMO
BACKGROUND: Nanoparticles and regenerative biomineralization are new caries prevention technologies. This study assessed the remineralizing effect of self-assembling peptide (P11-4), Nanosilver Fluoride (NSF) and sodium fluoride (NaF) on white spot lesions (WSLs) in permanent teeth. METHODS: Sixty six young adults with WSLs on buccal surfaces in permanent teeth and ICDAS code 1 or 2, were randomly assigned to one of three groups; P11-4, NSF or NaF. Assessment of ICDAS scores, lesion activity (Nyvad scores) and diagnodent readings of lesions were done at baseline and after 1, 3, 6 and 12 months of agents' application. Comparisons between groups were made using chi squared test and comparison within groups were made using McNemar test. Multilevel binary logistic regression was used to assess the effect of agents on change of ICDAS scores after 3, 6 and 12 months (reduction versus no reduction). RESULTS: There were 147 teeth in 66 patients; mean ± SD age = 13.46 ± 4.31 years. There were significant differences in the change of ICDAS scores among the three groups after 3 and 6 months (p = 0.005). The reduction in ICDAS score increased steadily in all groups across time with the greatest increase in the P11-4 group: 54.5% after 12 months. Lesion activity (Nyvad scores) showed significant differences among the three groups with the greatest percentage of inactive cases in the P11-4 group. Multilevel binary logistic regression showed non-significant reduction of ICDAS in P11-4 and NSF varnishes compared to NaF varnish (AOR = 2.56, 95% CI: 0.58, 8.77 and AOR = 2.12, 95% CI: 0.59, 7.64 respectively). CONCLUSION: P11-4 and NSF varnish reduced the ICDAS scores, caries activity and diagnodent readings of WSLs in permanent teeth. However, the change in ICDAS scores was not significantly different from NaF. TRIAL REGISTRATION: This trial was prospectively registered on the clinicaltrials.gov registry with ID: NCT04929509 on 18/6/2021.
Assuntos
Cárie Dentária , Fluoretos , Adulto Jovem , Humanos , Criança , Adolescente , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Esmalte Dentário , PeptídeosRESUMO
Background and Objectives: A novel synthetic self-assembling peptide, PuraStat, has been introduced as a hemostatic agent. This case series aimed to evaluate the clinical efficacy of PuraStat for gastrointestinal bleeding during emergency endoscopy. Cases: Twenty-five patients with gastrointestinal bleeding who had undergone emergency endoscopy with PuraStat between August 2021 and December 2022 were retrospectively examined. Six patients were receiving antithrombotic agents, and ten patients with refractory gastrointestinal bleeding had undergone at least one endoscopic hemostatic procedure. The breakdown of bleeding was gastroduodenal ulcer/erosion in 12 cases, bleeding after gastroduodenal or colorectal endoscopic resection in 4 cases, rectal ulcer in 2 cases, postoperative anastomotic ulcer in 2 cases, and gastric cancer, diffuse antral vascular ectasia, small intestinal ulcer, colonic diverticular bleeding, and radiation proctitis in each case. The method of hemostasis was only PuraStat application in six cases, and hemostasis in combination with high-frequency hemostatic forceps, hemostatic clip, argon plasma coagulation, and hemostatic agents (i.e., thrombin) in the remaining cases. Rebleeding was observed in three cases. Hemostatic efficiency was observed in 23 cases (92%). Conclusions: PuraStat has the expected hemostatic effect on gastrointestinal bleeding during emergency endoscopy. The use of PuraStat should be considered in emergency endoscopic hemostasis of gastrointestinal bleeding.
Assuntos
Hemostase Endoscópica , Hemostáticos , Humanos , Hemostase Endoscópica/métodos , Úlcera , Estudos Retrospectivos , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/cirurgia , Resultado do Tratamento , PeptídeosRESUMO
This study aimed to assess the combined application of two biomaterials, a selfassembling peptide hydrogel (SPH) and an atelocollagen sponge (ACS). The ACS was combined with SPH (PuraMatrixâ or PanaceaGelâ) and its osteogenic effects on mouse osteoblastic cell line MC3T3 then evaluated. Each type of SPH was successfully incorporated into the ACS. The MC3T3 cells showed uniform distribution within the scaffold. No necrotic cells were observed throughout the experimental procedures. When the SPH was combined with the ACS, the MC3T3 cells differentiated toward the osteo-lineage, expressing Alp, Runx2, Osx, Bsp, and Oc. PanaceaGelâ exhibited a stronger osteogenic effect on the cells than PuraMatrixâ.
Assuntos
Colágeno , Hidrogéis , Camundongos , Animais , Peptídeos/farmacologia , Diferenciação Celular , Osteogênese , OsteoblastosRESUMO
This research aims to investigate the encapsulation and controlled release effect of the newly developed self-assembling peptide R-LIFE-1 on exosomes. The gelling ability and morphological structure of the chiral self-assembling peptide (CSAP) hydrogel were examined using advanced imaging techniques, including atomic force microscopy, transmission electron microscopy, and cryo-scanning electron microscopy. The biocompatibility of the CSAP hydrogel was assessed through optical microscopy and fluorescent staining. Exosomes were isolated via ultrafiltration, and their quality was evaluated using Western blot analysis, nanoparticle tracking analysis, and transmission electron microscopy. The controlled release effect of the CSAP hydrogel on exosomes was quantitatively analyzed using laser confocal microscopy and a BCA assay kit. The results revealed that the self-assembling peptide R-LIFE-1 exhibited spontaneous assembly in the presence of various ions, leading to the formation of nanofibers. These nanofibers were cross-linked, giving rise to a robust nanofiber network structure, which further underwent cross-linking to generate a laminated membrane structure. The nanofibers possessed a large surface area, allowing them to encapsulate a substantial number of water molecules, thereby forming a hydrogel material with high water content. This hydrogel served as a stable spatial scaffold and loading matrix for the three-dimensional culture of cells, as well as the encapsulation and controlled release of exosomes. Importantly, R-LIFE-1 demonstrated excellent biocompatibility, preserving the growth of cells and the biological activity of exosomes. It rapidly formed a three-dimensional network scaffold, enabling the stable loading of cells and exosomes, while exhibiting favorable biocompatibility and reduced cytotoxicity. In conclusion, the findings of this study support the notion that R-LIFE-1 holds significant promise as an ideal tissue engineering material for tissue repair applications.
Assuntos
Exossomos , Preparações de Ação Retardada , Hidrogéis , Microscopia Eletrônica de Varredura , PeptídeosRESUMO
OBJECTIVES: The reconstruction of bone defects remains a major clinical issue. Our study aims to investigate the ability of RATEA16 (RA, [CH3CONH] RADARADARADARADA-[CONH2]) for the sustained delivering VEGF and BMP-2 to promote angiogenesis and osteogenesis in bone reconstruction. MATERIALS AND METHODS: We prepared and investigated the characterization of RATEA16. The survival of human umbilical vein endothelial cells (HUVECs) and human stem cells of the apical papilla (SCAPs) encapsulated in RATEA16 hydrogel was detected. Then, we established RA-VEGF/BMP-2 drug delivery systems and measured their drug release pattern. The effects of RA-VEGF scaffolds on HUVECs angiogenesis were investigated in vitro. Then, osteoblastic differentiation capacity of SCAPs with RA-BMP-2 scaffolds was analyzed by ALP activity and expression of osteoblast-related genes. RESULTS: A porous nanofiber microstructure endowed this scaffold with the ability to maintain the survival of HUVECs and SCAPs. The RA-VEGF/BMP-2 drug delivery systems exhibited several advantagesin vitro: injectability, biodegradability, good biocompatibility, and noncytotoxicity. Released rhVEGF165 /BMP-2 were proved to promote angiogenesis of HUVECs as well as osteogenesis of SCAPs abilities. CONCLUSION: RATEA16 loading with VEGF and BMP-2 might be a potential clinical strategy for tissue engineering, especially in bone reconstruction, due to its ability of delivering growth factors effectively and efficiently.
Assuntos
Indutores da Angiogênese , Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Peptídeos/metabolismo , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
There is a continued need for effective hemostatic agents that are safe for neurosurgical use. Self-assembling peptide hydrogels have been suggested as novel hemostatic agents. They offer some advantages for neurosurgical hemostasis (e.g., transparency), but their efficacy and safety for neurosurgery have not been established. In this paper, the efficacy and safety of two self-assembling peptides, RADA16 and IEIK13, are explored for hemostasis of oozing bleeding on the rat cerebral cortex (nâ¯=â¯56). Chronic safety was evaluated by neuropathological evaluation at one, four, and twelve weeks after craniotomy (nâ¯=â¯32). An inactive control and oxidized cellulose served as comparators. Mean time-to-hemostasis was significantly shorter for RADA16 and IEIK13 compared to controls, while safety evaluation yielded similar results. Histopathological response consisted primarily of macrophage infiltration at the lesion site in all groups. This study confirms the hemostatic potential and safety of RADA16 and IEIK13 for hemostasis in the rat brain.
Assuntos
Hemostasia , Hemostáticos , Animais , Hemorragia , Hemostáticos/farmacologia , Hidrogéis/farmacologia , Peptídeos/farmacologia , RatosRESUMO
OBJECTIVES: This study's aim was to investigate the safety and performance of a self-assembling peptide matrix (SAPM) P11-4 for the treatment of periodontal disease in a controlled pre-clinical study. MATERIALS AND METHODS: Acute buccal bony dehiscence defects (LxW: 5 × 3 mm) were surgically created on the distal root of four teeth on one mandible side of 7 beagle dogs followed by another identical surgery 8 weeks later on the contralateral side. SAPM P11-4 (with and without root conditioning with 24% EDTA (T1, T2)), Emdogain® (C) and a sham intervention (S) were randomly applied on the four defects at each time point. Four weeks after the second surgery and treatment, the animals were sacrificed, the mandibles measured by micro-computed tomography (µ-CT) and sections of the tissue were stained and evaluated histologically. RESULTS: Clinically and histologically, no safety concerns or pathological issues due to the treatments were observed in any of the study groups at any time point. All groups showed overall similar results after 4 and 12 weeks of healing regarding new cementum, functionality of newly formed periodontal ligament and recovery of height and volume of the new alveolar bone and mineral density. CONCLUSION: A controlled clinical study in humans should be performed in a next step as no adverse effects or safety issues, which might affect clinical usage of the product, were observed. CLINICAL RELEVANCE: The synthetic SAPM P11-4 may offer an alternative to the animal-derived product Emdogain® in the future.
Assuntos
Regeneração Tecidual Guiada Periodontal , Oligopeptídeos , Ligamento Periodontal , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/cirurgia , Animais , Regeneração Óssea , Cemento Dentário , Cães , Regeneração Tecidual Guiada Periodontal/veterinária , Mandíbula/cirurgia , Oligopeptídeos/efeitos adversos , Ligamento Periodontal/patologia , Raiz Dentária/cirurgia , Microtomografia por Raio-XRESUMO
Clinical studies have provided evidence for dopamine (DA) cell replacement therapy in Parkinson's Disease. However, grafts derived from foetal tissue or pluripotent stem cells (PSCs) remain heterogeneous, with a high proportion of non-dopaminergic cells, and display subthreshold reinnervation of target tissues, thereby highlighting the need to identify new strategies to improve graft outcomes. In recent work, Stromal Cell-Derived Factor-1 (SDF1), secreted from meninges, has been shown to exert many roles during ventral midbrain DA development and DA-directed differentiation of PSCs. Related, co-implantation of meningeal cells has been shown to improve neural graft outcomes, however, no direct evidence for the role of SDF1 in neural grafting has been shown. Due to the rapid degradation of SDF1 protein, here, we utilised a hydrogel to entrap the protein and sustain its delivery at the transplant site to assess the impact on DA progenitor differentiation, survival and plasticity. Hydrogels were fabricated from self-assembling peptides (SAP), presenting an epitope for laminin, the brain's main extracellular matrix protein, thereby providing cell adhesive support for the grafts and additional laminin-integrin signalling to influence cell fate. We show that SDF1 functionalised SAP hydrogels resulted in larger grafts, containing more DA neurons, increased A9 DA specification (the subpopulation of DA neurons responsible for motor function) and enhanced innervation. These findings demonstrate the capacity for functionalised, tissue-specific hydrogels to improve the composition of grafts targeted for neural repair.
Assuntos
Doença de Parkinson , Animais , Biomimética , Diferenciação Celular/fisiologia , Quimiocina CXCL12 , Dopamina/metabolismo , Neurônios Dopaminérgicos , Matriz Extracelular/metabolismo , Feto/metabolismo , Hidrogéis/química , Laminina , Doença de Parkinson/terapia , Roedores/metabolismoRESUMO
BACKGROUND: This study evaluated the adhesion and whitening efficacy of a mixture of hydroxyapatite and P11-4 self-assembling peptide (HAP-peptide) on bovine enamel after pre-treatment with low-concentrated sodium hypochlorite (NaOCl). METHODS: Fifty-two caries-free bovine incisors were selected. 50 teeth were randomly allocated to five groups (n = 10). The first group was treated with a mixture of 6.25 wt% HAP and 5 ml P11-4 peptide, using NaOCl 3% as pre-treatment. Second, third and fourth groups were treated with 6.25 wt% HAP, 5 ml P11-4 peptide, and NaOCl 3%, respectively. In the fifth group, only water was applied (control group). The color of samples was measured using a spectrophotometer (USB4000-VIS-NIR-ES, Ostfildern, Germany). To evaluate color changes, ΔE values were statistically analyzed. Finally, adherence of HAP particles on two enamel surfaces with and without pre-treatment with NaOCl was analyzed with SEM. RESULTS: It was observed that the ΔE of the HAP-peptide suspension after pre-treatment with NaOCl was significantly stronger than the control group. In contrast, the overall color changes of separate applications of HAP, peptide, and NaOCl did not differ notably from the control group. SEM observations confirmed that pre-treatment with NaOCl resulted in a more pronounced coverage of HAP on the enamel surface. CONCLUSIONS: Pre-treatment with a low-concentrated NaOCl enhanced the adherence of the HAP layer on the enamel surface, resulting in a stronger whitening effect. TRIAL REGISTRATION: The peptide-HAP suspension is effective in improving tooth whiteness.