Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2318969121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513105

RESUMO

Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO2 and were chemolithoautotrophs that obtained their energy and electrons from H2. The acetyl-CoA pathway of CO2 fixation is central to that view because of its antiquity: Among known CO2 fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H2. How can the acetyl-CoA pathway be primordial if it requires flavin-based electron bifurcation? Here, we show that native iron (Fe0), but not Ni0, Co0, Mo0, NiFe, Ni2Fe, Ni3Fe, or Fe3O4, promotes the H2-dependent reduction of aqueous Clostridium pasteurianum ferredoxin at pH 8.5 or higher within a few hours at 40 °C, providing the physiological function of flavin-based electron bifurcation, but without the help of enzymes or organic redox cofactors. H2-dependent ferredoxin reduction by iron ties primordial ferredoxin reduction and early metabolic evolution to a chemical process in the Earth's crust promoted by solid-state iron, a metal that is still deposited in serpentinizing hydrothermal vents today.


Assuntos
Ferredoxinas , Ferro , Ferredoxinas/metabolismo , Ferro/metabolismo , Hidrogênio/metabolismo , Elétrons , Acetilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Oxirredução , Flavinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(42): e2206845119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215489

RESUMO

Little is known of acetogens in contemporary serpentinizing systems, despite widely supported theories that serpentinite-hosted environments supported the first life on Earth via acetogenesis. To address this knowledge gap, genome-resolved metagenomics was applied to subsurface fracture water communities from an area of active serpentinization in the Samail Ophiolite, Sultanate of Oman. Two deeply branching putative bacterial acetogen types were identified in the communities belonging to the Acetothermia (hereafter, types I and II) that exhibited distinct distributions among waters with lower and higher water-rock reaction (i.e., serpentinization influence), respectively. Metabolic reconstructions revealed contrasting core metabolic pathways of type I and II Acetothermia, including in acetogenic pathway components (e.g., bacterial- vs. archaeal-like carbon monoxide dehydrogenases [CODH], respectively), hydrogen use to drive acetogenesis, and chemiosmotic potential generation via respiratory (type I) or canonical acetogen ferredoxin-based complexes (type II). Notably, type II Acetothermia metabolic pathways allow for use of serpentinization-derived substrates and implicate them as key primary producers in contemporary hyperalkaline serpentinite environments. Phylogenomic analyses indicate that 1) archaeal-like CODH of the type II genomes and those of other serpentinite-associated Bacteria derive from a deeply rooted horizontal transfer or origin among archaeal methanogens and 2) Acetothermia are among the earliest evolving bacterial lineages. The discovery of dominant and early-branching acetogens in subsurface waters of the largest near-surface serpentinite formation provides insight into the physiological traits that likely facilitated rock-supported life to flourish on a primitive Earth and possibly on other rocky planets undergoing serpentinization.


Assuntos
Monóxido de Carbono , Ferredoxinas , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Ferredoxinas/metabolismo , Hidrogênio/metabolismo , Silicatos de Magnésio , Omã , Água/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35031568

RESUMO

Hydration and carbonation reactions within the Earth cause an increase in solid volume by up to several tens of vol%, which can induce stress and rock fracture. Observations of naturally hydrated and carbonated peridotite suggest that permeability and fluid flow are enhanced by reaction-induced fracturing. However, permeability enhancement during solid-volume-increasing reactions has not been achieved in the laboratory, and the mechanisms of reaction-accelerated fluid flow remain largely unknown. Here, we present experimental evidence of significant permeability enhancement by volume-increasing reactions under confining pressure. The hydromechanical behavior of hydration of sintered periclase [MgO + H2O → Mg(OH)2] depends mainly on the initial pore-fluid connectivity. Permeability increased by three orders of magnitude for low-connectivity samples, whereas it decreased by two orders of magnitude for high-connectivity samples. Permeability enhancement was caused by hierarchical fracturing of the reacting materials, whereas a decrease was associated with homogeneous pore clogging by the reaction products. These behaviors suggest that the fluid flow rate, relative to reaction rate, is the main control on hydromechanical evolution during volume-increasing reactions. We suggest that an extremely high reaction rate and low pore-fluid connectivity lead to local stress perturbations and are essential for reaction-induced fracturing and accelerated fluid flow during hydration/carbonation.

4.
Contrib Mineral Petrol ; 178(11): 78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38616804

RESUMO

Serpentinites, widespread in Earth's lithosphere, exhibit inherent nanoporosity that may significantly impact their geochemical behaviour. This study provides a comprehensive investigation into the characteristics, scale dependence, and potential implications of nanoporosity in lizardite-dominated serpentinites. Through a combination of multidimensional imaging techniques and molecular-dynamics-based discrete element modelling, we reveal that serpentinites function as nanoporous media with pore sizes predominantly less than 100 nm. Crystallographic relationships between olivine, serpentine, and nanoporosity are explored, indicating a lack of significant correlations. Instead, stochastic growth and random packing of serpentine grains within mesh cores may result in interconnected porosity. The analysis of pore morphology suggests that the irregular pore shapes align with the crystal form of serpentine minerals. Furthermore, the nanoporosity within brucite-rich layers at the serpentine-olivine interface is attributed to delamination along weak van der Waals planes, while pore formation within larger brucite domains likely results from low-temperature alteration processes. The fractal nature of the pore size distribution and the potential interconnectivity of porosity across different scales further support the presence of a pervasive nanoporous network within serpentinites. Confinement within these nanopores may introduce unique emergent properties, potentially influencing fluid transport, mineral solubility, and chemical reactions. As such, these processes may have profound implications for the geochemical evolution of serpentinites.

5.
Proc Natl Acad Sci U S A ; 117(26): 14756-14763, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32546521

RESUMO

Since the initial discovery of low-temperature alkaline hydrothermal vents off the Mid-Atlantic Ridge axis nearly 20 y ago, the observation that serpentinizing systems produce abundant H2 has strongly influenced models of atmospheric evolution and geological scenarios for the origin of life. Nevertheless, the principal mechanisms that generate H2 in these systems, and how secular changes in seawater composition may have modified serpentinization-driven H2 fluxes, remain poorly constrained. Here, we demonstrate that the dominant mechanism for H2 production during low-temperature serpentinization is directly related to a Si deficiency in the serpentine structure, which itself is caused by low SiO2(aq) concentrations in serpentinizing fluids derived from modern seawater. Geochemical calculations explicitly incorporating this mechanism illustrate that H2 production is directly proportional to both the SiO2(aq) concentration and temperature of serpentinization. These results imply that, before the emergence of silica-secreting organisms, elevated SiO2(aq) concentrations in Precambrian seawater would have generated serpentinites that produced up to two orders of magnitude less H2 than their modern counterparts, consistent with Fe-oxidation states measured on ancient igneous rocks. A mechanistic link between the marine Si cycle and off-axis H2 production requires a reevaluation of the processes that supplied H2 to prebiotic and early microbial systems, as well as those that balanced ocean-atmosphere redox through time.


Assuntos
Evolução Biológica , Hidrogênio/química , Água do Mar/química , Atmosfera , Ciências da Terra , Planeta Terra , Fontes Hidrotermais , Ferro/química , Oxirredução , Dióxido de Silício/química
6.
Angew Chem Int Ed Engl ; 62(22): e202218189, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36951652

RESUMO

Abiotic synthesis of formate and short hydrocarbons takes place in serpentinizing vents where some members of vent microbial communities live on abiotic formate as their main carbon source. To better understand the catalytic properties of Ni-Fe minerals that naturally exist in hydrothermal vents, we have investigated the ability of synthetic Ni-Fe based nanoparticular solids to catalyze the H2 -dependent reduction of CO2 , the first step required for the beginning of pre-biotic chemistry. Mono and bimetallic Ni-Fe nanoparticles with varied Ni-to-Fe ratios transform CO2 and H2 into intermediates and products of the acetyl-coenzyme A pathway-formate, acetate, and pyruvate-in mM range under mild hydrothermal conditions. Furthermore, Ni-Fe catalysts converted CO2 to similar products without molecular H2 by using water as a hydrogen source. Both CO2 chemisorption analysis and post-reaction characterization of materials indicate that Ni and Fe metals play complementary roles for CO2 fixation.

7.
Appl Environ Microbiol ; 88(17): e0092922, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35950875

RESUMO

Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions. IMPORTANCE The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy and carbon from Earth's mantle. Uplift of mantle rocks into the seafloor can trigger a process known as serpentinization that releases molecular hydrogen (H2) and creates unusual environmental conditions where simple organic carbon molecules are more stable than dissolved inorganic carbon. This study provides an initial glimpse into the kinds of microbes that live deep within the seafloor where serpentinization takes place, by sampling hydrothermal fluids exiting from the Lost City chimneys. The metabolic strategies that these microbes appear to be using are also shared by microbes that inhabit other sites of serpentinization, including continental subsurface environments and natural springs. Therefore, the results of this study contribute to a broader, interdisciplinary effort to understand the general principles and mechanisms by which serpentinization-associated processes can support life on Earth and perhaps other worlds.


Assuntos
Ecossistema , Fontes Hidrotermais , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Formiatos/metabolismo , Hidrogênio/metabolismo , Fontes Hidrotermais/microbiologia , Sulfatos/metabolismo
8.
Geophys Res Lett ; 49(21): e2022GL100395, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36589777

RESUMO

Serpentinization and carbonation of mantle rocks (peridotite alteration) are fundamentally important processes for a spectrum of geoscience topics, including arc volcanism, earthquake processes, chemosynthetic biological communities, and carbon sequestration. Data from a hydrophone array deployed in the Multi-Borehole Observatory (MBO) of the Oman Drilling Project demonstrates that free gas generated by peridotite alteration and/or microbial activity migrates through the formation in discrete bursts of activity. We detected several, minutes-long, swarms of gas discharge into Hole BA1B of the MBO over the course of a 9 month observation interval. The episodic nature of the migration events indicates that free gas accumulates in the permeable flow network, is pressurized, and discharges rapidly into the borehole when a critical pressure, likely associated with a capillary barrier at a flow constriction, is reached. Our observations reveal a dynamic mode of fluid migration during serpentinization, and highlight the important role that free gas can play in modulating pore pressure, fluid flow, and alteration kinetics during peridotite weathering.

9.
Proc Natl Acad Sci U S A ; 116(36): 17666-17672, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427518

RESUMO

The conditions of methane (CH4) formation in olivine-hosted secondary fluid inclusions and their prevalence in peridotite and gabbroic rocks from a wide range of geological settings were assessed using confocal Raman spectroscopy, optical and scanning electron microscopy, electron microprobe analysis, and thermodynamic modeling. Detailed examination of 160 samples from ultraslow- to fast-spreading midocean ridges, subduction zones, and ophiolites revealed that hydrogen (H2) and CH4 formation linked to serpentinization within olivine-hosted secondary fluid inclusions is a widespread process. Fluid inclusion contents are dominated by serpentine, brucite, and magnetite, as well as CH4(g) and H2(g) in varying proportions, consistent with serpentinization under strongly reducing, closed-system conditions. Thermodynamic constraints indicate that aqueous fluids entering the upper mantle or lower oceanic crust are trapped in olivine as secondary fluid inclusions at temperatures higher than ∼400 °C. When temperatures decrease below ∼340 °C, serpentinization of olivine lining the walls of the fluid inclusions leads to a near-quantitative consumption of trapped liquid H2O. The generation of molecular H2 through precipitation of Fe(III)-rich daughter minerals results in conditions that are conducive to the reduction of inorganic carbon and the formation of CH4 Once formed, CH4(g) and H2(g) can be stored over geological timescales until extracted by dissolution or fracturing of the olivine host. Fluid inclusions represent a widespread and significant source of abiotic CH4 and H2 in submarine and subaerial vent systems on Earth, and possibly elsewhere in the solar system.

10.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33127818

RESUMO

Serpentinization can generate highly reduced fluids replete with hydrogen (H2) and methane (CH4), potent reductants capable of driving microbial methanogenesis and methanotrophy, respectively. However, CH4 in serpentinized waters is thought to be primarily abiogenic, raising key questions about the relative importance of methanogens and methanotrophs in the production and consumption of CH4 in these systems. Herein, we apply molecular approaches to examine the functional capability and activity of microbial CH4 cycling in serpentinization-impacted subsurface waters intersecting multiple rock and water types within the Samail Ophiolite of Oman. Abundant 16S rRNA genes and transcripts affiliated with the methanogenic genus Methanobacterium were recovered from the most alkaline (pH, >10), H2- and CH4-rich subsurface waters. Additionally, 16S rRNA genes and transcripts associated with the aerobic methanotrophic genus Methylococcus were detected in wells that spanned varied fluid geochemistry. Metagenomic sequencing yielded genes encoding homologs of proteins involved in the hydrogenotrophic pathway of microbial CH4 production and in microbial CH4 oxidation. Transcripts of several key genes encoding methanogenesis/methanotrophy enzymes were identified, predominantly in communities from the most hyperalkaline waters. These results indicate active methanogenic and methanotrophic populations in waters with hyperalkaline pH in the Samail Ophiolite, thereby supporting a role for biological CH4 cycling in aquifers that undergo low-temperature serpentinization.IMPORTANCE Serpentinization of ultramafic rock can generate conditions favorable for microbial methane (CH4) cycling, including the abiotic production of hydrogen (H2) and possibly CH4 Systems of low-temperature serpentinization are geobiological targets due to their potential to harbor microbial life and ubiquity throughout Earth's history. Biomass in fracture waters collected from the Samail Ophiolite of Oman, a system undergoing modern serpentinization, yielded DNA and RNA signatures indicative of active microbial methanogenesis and methanotrophy. Intriguingly, transcripts for proteins involved in methanogenesis were most abundant in the most highly reacted waters that have hyperalkaline pH and elevated concentrations of H2 and CH4 These findings suggest active biological methane cycling in serpentinite-hosted aquifers, even under extreme conditions of high pH and carbon limitation. These observations underscore the potential for microbial activity to influence the isotopic composition of CH4 in these systems, which is information that could help in identifying biosignatures of microbial activity on other planets.


Assuntos
Água Subterrânea/microbiologia , Silicatos de Magnésio , Metano/metabolismo , Bactérias/genética , Metagenômica , Omã , RNA Ribossômico 16S/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-34379584

RESUMO

Three highly alkaliphilic bacterial strains designated as A1T, H1T and B1T were isolated from two highly alkaline springs at The Cedars, a terrestrial serpentinizing site. Cells from all strains were motile, Gram-negative and rod-shaped. Strains A1T, H1T and B1T were mesophilic (optimum, 30 °C), highly alkaliphilic (optimum, pH 11) and facultatively autotrophic. Major cellular fatty acids were saturated and monounsaturated hexadecenoic and octadecanoic acids. The genome size of strains A1T, H1T and B1T was 2 574 013, 2 475 906 and 2 623 236 bp, and the G+C content was 66.0, 66.2 and 66.1 mol%, respectively. Analysis of the 16S rRNA genes showed the highest similarity to the genera Malikia (95.1-96.4 %), Macromonas (93.0-93.6 %) and Hydrogenophaga (93.0-96.6 %) in the family Comamonadaceae. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on core gene sequences revealed that the isolated strains diverged from the related species, forming a distinct branch. Average amino acid identity values of strains A1T, H1T and B1T against the genomes of related members in this family were below 67 %, which is below the suggested threshold for genera boundaries. Average nucleotide identity by blast values and digital DNA-DNA hybridization among the three strains were below 92.0 and 46.6 % respectively, which are below the suggested thresholds for species boundaries. Based on phylogenetic, genomic and phenotypic characterization, we propose Serpentinimonas gen. nov., Serpentinimonas raichei sp. nov. (type strain A1T=NBRC 111848T=DSM 103917T), Serpentinimonas barnesii sp. nov. (type strain H1T= NBRC 111849T=DSM 103920T) and Serpentinimonas maccroryi sp. nov. (type strain B1T=NBRC 111850T=DSM 103919T) belonging to the family Comamonadaceae. We have designated Serpentinimonas raichei the type species for the genus because it is the dominant species in The Cedars springs.


Assuntos
Comamonadaceae , Filogenia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Angew Chem Int Ed Engl ; 60(45): 24054-24058, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34519405

RESUMO

Natural hydrogen (H2 ) has gained considerable attentions as a renewable energy resource to mitigate the globally increasing environmental concerns. Low-temperature serpentinization (<200 °C) as a typical water-rock reaction is a major source of the natural H2 . However, the reaction mechanism and the controlling step to product H2 remained unclear, which hinders the further utilization of natural H2 . Herein, we demonstrated that the H2 production rate could be determined by the Fe(OH)2 oxidation during low-temperature serpentinization. Moreover, the co-existence of Ni2+ could largely enhance the H2 production kinetics. With the addition of only 1 % Ni2+ , the H2 production rate was remarkably enhanced by about two orders of magnitude at 90 °C. D2 O isotopic experiment and theoretical calculations revealed that the enhanced H2 production kinetics could be attributed to the catalytic role of Ni2+ to promote the reduction of H2 O.

13.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220840

RESUMO

The Atlantis Massif rises 4,000 m above the seafloor near the Mid-Atlantic Ridge and consists of rocks uplifted from Earth's lower crust and upper mantle. Exposure of the mantle rocks to seawater leads to their alteration into serpentinites. These aqueous geochemical reactions, collectively known as the process of serpentinization, are exothermic and are associated with the release of hydrogen gas (H2), methane (CH4), and small organic molecules. The biological consequences of this flux of energy and organic compounds from the Atlantis Massif were explored by International Ocean Discovery Program (IODP) Expedition 357, which used seabed drills to collect continuous sequences of shallow (<16 m below seafloor) marine serpentinites and mafic assemblages. Here, we report the census of microbial diversity in samples of the drill cores, as measured by environmental 16S rRNA gene amplicon sequencing. The problem of contamination of subsurface samples was a primary concern during all stages of this project, starting from the initial study design, continuing to the collection of samples from the seafloor, handling the samples shipboard and in the lab, preparing the samples for DNA extraction, and analyzing the DNA sequence data. To distinguish endemic microbial taxa of serpentinite subsurface rocks from seawater residents and other potential contaminants, the distributions of individual 16S rRNA gene sequences among all samples were evaluated, taking into consideration both presence/absence and relative abundances. Our results highlight a few candidate residents of the shallow serpentinite subsurface, including uncultured representatives of the Thermoplasmata, Acidobacteria, Acidimicrobia, and ChloroflexiIMPORTANCE The International Ocean Discovery Program Expedition 357-"Serpentinization and Life"-utilized seabed drills to collect rocks from the oceanic crust. The recovered rock cores represent the shallow serpentinite subsurface of the Atlantis Massif, where reactions between uplifted mantle rocks and water, collectively known as serpentinization, produce environmental conditions that can stimulate biological activity and are thought to be analogous to environments that were prevalent on the early Earth and perhaps other planets. The methodology and results of this project have implications for life detection experiments, including sample return missions, and provide a window into the diversity of microbial communities inhabiting subseafloor serpentinites.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Água do Mar/microbiologia , Oceano Atlântico , Oceanos e Mares , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
14.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32033949

RESUMO

The Lost City hydrothermal field on the Mid-Atlantic Ridge supports dense microbial life on the lofty calcium carbonate chimney structures. The vent field is fueled by chemical reactions between the ultramafic rock under the chimneys and ambient seawater. These serpentinization reactions provide reducing power (as hydrogen gas) and organic compounds that can serve as microbial food; the most abundant of these are methane and formate. Previous studies have characterized the interior of the chimneys as a single-species biofilm inhabited by the Lost City Methanosarcinales, but they also indicated that this methanogen is unable to metabolize formate. The new metagenomic results presented here indicate that carbon cycling in these Lost City chimney biofilms could depend on the metabolism of formate by Chloroflexi populations. Additionally, we present evidence for metabolically diverse, formate-utilizing Sulfurovum populations and new genomic and phylogenetic insights into the unique Lost City MethanosarcinalesIMPORTANCE Primitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also potential extraterrestrial rock-powered ecosystems. The microscopic life covering the towering chimney structures at the Lost City has been previously documented, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor.


Assuntos
Chloroflexi/genética , Formiatos/metabolismo , Genoma Bacteriano , Oceano Atlântico , Carbono/metabolismo , Chloroflexi/metabolismo , Fontes Hidrotermais/microbiologia
15.
Arch Microbiol ; 202(5): 1077-1084, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32030461

RESUMO

Plant material falling into the ultra-basic (pH 11.5-11.9) springs within The Cedars, an actively serpentinizing site in Sonoma County, California, is subject to conditions that mimic the industrial pretreatment of lignocellulosic biomass for biofuel production. We sought to obtain hemicellulolytic/cellulolytic bacteria from The Cedars springs that are capable of withstanding the extreme alkaline conditions wherein calcium hydroxide-rich water removes lignin, making cell wall polysaccharides more accessible to microorganisms and their enzymes. We enriched for such bacteria by adding plant debris from the springs into a synthetic alkaline medium with ground tissue of the biofuel crop switchgrass (Panicum virgatum L.) as the sole source of carbon. From the enrichment culture we isolated the facultative anaerobic bacterium Cellulomonas sp. strain FA1 (NBRC 114238), which tolerates high pH and catabolizes the major plant cell wall-associated polysaccharides cellulose, pectin, and hemicellulose. Strain FA1 in monoculture colonized the plant material and degraded switchgrass at a faster rate than the community from which it was derived. Cells of strain FA1 could be acclimated through subculturing to grow at a maximal concentration of 13.4% ethanol. A strain FA1-encoded ß-1, 4-endoxylanase expressed in E. coli was active at a broad pH range, displaying near maximal activity at pH 6-9. Discovery of this bacterium illustrates the value of extreme alkaline springs in the search for microorganisms with potential for consolidated bioprocessing of plant biomass to biofuels and other valuable bio-inspired products.


Assuntos
Biocombustíveis/microbiologia , Cellulomonas/isolamento & purificação , Cellulomonas/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Lignina/metabolismo , Composição de Bases/genética , Biomassa , Celulose/metabolismo , Endo-1,4-beta-Xilanases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Panicum/química , Panicum/genética , Panicum/metabolismo , Pectinas/metabolismo , Filogenia , Plantas/metabolismo , Polissacarídeos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20180428, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31902334

RESUMO

A series of three laboratory experiments were conducted to investigate how pH affects reaction pathways and rates during serpentinization. Two experiments were conducted under strongly alkaline conditions using olivine as reactant at 200 and 230°C, and the results were compared with previous studies performed using the same reactants and methods at more neutral pH. For both experiments, higher pH resulted in more rapid serpentinization of the olivine and generation of larger amounts of H2 for comparable reaction times. Proportionally greater amounts of Fe were partitioned into brucite and chrysotile and less into magnetite in the experiments conducted at higher pH. In a third experiment, alkaline fluids were injected into an ongoing experiment containing olivine and orthopyroxene to raise the pH from circumneutral to strongly alkaline conditions. Increasing the pH of the olivine-orthopyroxene experiment resulted in an immediate and steep increase in H2 production, and led to far more extensive reaction of the primary minerals compared to a similar experiment conducted under more neutral conditions. The results suggest that the development of strongly alkaline conditions in actively serpentinizing systems promotes increased rates of reaction and H2 production, enhancing the flux of H2 available to support biological activity in these environments. This article is part of a discussion meeting issue 'Serpentinite in the Earth System'.

17.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20180433, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31902343

RESUMO

Mantle peridotite in Wadi Fins in eastern Oman exhibits three concentric alteration zones with oxide and sulfide mineralogy recording gradients in fO2 and fS2 (fugacity) of more than 20 orders of magnitude over 15-20 cm. The black cores of samples (approx. 5 cm in diameter) exhibit incomplete, nearly isochemical serpentinization, with relict primary mantle minerals (olivine, orthopyroxene and clinopyroxene) along with sulfide assemblages (pentlandite/heazlewoodite/bornite) recording low fO2 and moderate fS2. In addition to the black cores, two alteration zones are evident from their colouration in outcrop and hand samples: green and red. These zones exhibit non-isochemical alteration characterized by intergrowths of stevensite/lizardite. All three reaction zones are cut by calcite ± serpentine veins, which are most abundant in the outer, red zones, sometimes are flanked by narrow red and/or green zones where they cut the black zones, and thus may be approximately coeval with all three alteration zones. The alteration zones record progressively higher fO2 recorded by Ni-rich sulfides and iron oxides/hydroxides. These alteration zones lost 20-30% of their initial magnesium content, together with mobilization of iron over short distances from inner green zones into outer red zones, where iron is reprecipitated in goethite intermixed with silicates due to higher fO2. Thermodynamic modelling at 60°C and 50 MPa (estimated alteration conditions) reproduces sulfide assemblages, fO2 changes and Mg and Fe mobility. This article is part of a discussion meeting issue 'Serpentinite in the Earth system'.

18.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20190151, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31902344

RESUMO

Autotrophs form the base of all complex food webs and seemingly have done so since early in Earth history. Phylogenetic evidence suggests that early autotrophs were anaerobic, used CO2 as both an oxidant and carbon source, were dependent on H2 as an electron donor, and used iron-sulfur proteins (termed ferredoxins) as a primary electron carrier. However, the reduction potential of H2 is not typically low enough to efficiently reduce ferredoxin. Instead, in modern strictly anaerobic and H2-dependent autotrophs, ferredoxin reduction is accomplished using one of several recently evolved enzymatic mechanisms, including electron bifurcating and coupled ion translocating mechanisms. These observations raise the intriguing question of why anaerobic autotrophs adopted ferredoxins as central electron carriers only to have to evolve complex machinery to reduce them. Here, we report calculated reduction potentials for H2 as a function of observed environmental H2 concentration, pH and temperature. Results suggest that a combination of alkaline pH and high H2 concentration yield H2 reduction potentials low enough to efficiently reduce ferredoxins. Hyperalkaline, H2 rich environments have existed in discrete locations throughout Earth history where ultramafic minerals are undergoing hydration through the process of serpentinization. These results suggest that serpentinizing systems, which would have been common on early Earth, naturally produced conditions conducive to the emergence of H2-dependent autotrophic life. The primitive process of hydrogenotrophic methanogenesis is used to examine potential changes in methanogenesis and Fd reduction pathways as these organisms diversified away from serpentinizing environments. This article is part of a discussion meeting issue 'Serpentinite in the earth system'.


Assuntos
Processos Autotróficos , Metabolismo Energético , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Oxirredução , Temperatura
19.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20180429, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31902336

RESUMO

The Lost City hydrothermal field is a dramatic example of the biological potential of serpentinization. Microbial life is prevalent throughout the Lost City chimneys, powered by the hydrogen gas and organic molecules produced by serpentinization and its associated geochemical reactions. Microbial life in the serpentinite subsurface below the Lost City chimneys, however, is unlikely to be as dense or active. The marine serpentinite subsurface poses serious challenges for microbial activity, including low porosities, the combination of stressors of elevated temperature, high pH and a lack of bioavailable ∑CO2. A better understanding of the biological opportunities and challenges in serpentinizing systems would provide important insights into the total habitable volume of Earth's crust and for the potential of the origin and persistence of life in Earth's subsurface environments. Furthermore, the limitations to life in serpentinizing subsurface environments on Earth have significant implications for the habitability of subsurface environments on ocean worlds such as Europa and Enceladus. Here, we review the requirements and limitations of life in serpentinizing systems, informed by our research at the Lost City and the underwater mountain on which it resides, the Atlantis Massif. This article is part of a discussion meeting issue 'Serpentinite in the Earth System'.


Assuntos
Fontes Hidrotermais/química , Minerais/química , Oceanos e Mares , Temperatura , Oligoelementos/química
20.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20180431, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31902341

RESUMO

We examined the mineralogical, chemical and isotopic compositions of secondary fluid inclusions in olivine-rich rocks from two active serpentinization systems: the Von Damm hydrothermal field (Mid-Cayman Rise) and the Zambales ophiolite (Philippines). Peridotite, troctolite and gabbroic rocks in these systems contain abundant CH4-rich secondary inclusions in olivine, with less abundant inclusions in plagioclase and clinopyroxene. Olivine-hosted secondary inclusions are chiefly composed of CH4 and minor H2, in addition to secondary minerals including serpentine, brucite, magnetite and carbonates. Secondary inclusions in plagioclase are dominated by CH4 with variable amounts of H2 and H2O, while those in clinopyroxene contain only CH4. We determined hydrocarbon abundances and stable carbon isotope compositions by crushing whole rocks and analysing the released volatiles using isotope ratio monitoring-gas chromatography mass spectrometry. Bulk rock gas analyses yielded appreciable quantities of CH4 and C2H6 in samples from Cayman (4-313 nmol g-1 CH4 and 0.02-0.99 nmol g-1 C2H6), with lesser amounts in samples from Zambales (2-37 nmol g-1 CH4 and 0.004-0.082 nmol g-1 C2H6). Mafic and ultramafic rocks at Cayman exhibit δ13CCH4 values of -16.7‰ to -4.4‰ and δ13CC2H6 values of -20.3‰ to +0.7‰. Ultramafic rocks from Zambales exhibit δ13CCH4 values of -12.4‰ to -2.8‰ and δ13CC2H6 values of -1.2‰ to -0.9‰. Similarities in the carbon isotopic compositions of CH4 and C2H6 in plutonic rocks, Von Damm hydrothermal fluids, and Zambales gas seeps suggest that leaching of fluid inclusions may provide a significant contribution of abiotic hydrocarbons to deep-sea vent fluids and ophiolite-hosted gas seeps. Isotopic compositions of CH4 and C2H6 from a variety of hydrothermal fields hosted in olivine-rich rocks that are similar to those in Von Damm vent fluids further support the idea that a significant portion of abiotic hydrocarbons in ultramafic-influenced vent fluids is derived from fluid inclusions. This article is part of a discussion meeting issue 'Serpentinite in the Earth system'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA