RESUMO
Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.
Assuntos
Bactérias , Trato Gastrointestinal , Metagenoma , Plasmídeos , Humanos , Bactérias/genética , Bacteroidetes/genética , Fezes/microbiologia , Plasmídeos/genéticaRESUMO
Effectively managing sewage sludge from Fenton reactions in an eco-friendly way is vital for Fenton technology's viability in pollution treatment. This study focuses on sewage sludge across various treatment stages, including generation, concentration, dehydration, and landfill, and employs chemical composite MoS2 to facilitate green resource utilization of all types of sludge. MoS2, with exposed Mo4+ and low-coordination sulfur, enhances iron cycling and creates an acidic microenvironment on the sludge surface. The MoS2-modified iron sludge exhibits outstanding (>95%) phenol and pollutant degradation in hydrogen peroxide and peroxymonosulfate-based Fenton systems, unlike unmodified sludge. This modified sludge maintains excellent Fenton activity in various water conditions and with multiple anions, allowing extended phenol degradation for over 14 d. Notably, the generated chemical oxygen demand (COD) in sludge modification process can be efficiently eliminated through the Fenton reaction, ensuring effluent COD compliance and enabling eco-friendly sewage sludge resource utilization.
RESUMO
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , RNA Viral , Águas ResiduáriasRESUMO
The present study aimed to determine the presence of Klebsiella pneumoniae and Escherichia coli with extended-spectrum ß-lactamase (ESBL)s property from treated wastewater effluents. Treated effluent samples were collected from two major water treatment plants which located at Avaniyapuram and Sakkimangalam, Madurai, Tamil Nadu, India. Among the 51 isolates, 56.86 % represented E. coli (18 from Avaniyapuram and 11 from Sakkimangalam) and 43.14 % were K. pneumoniae (7 from Avaniyapuram and 15 from Sakkimangalam). Based on the ESBL propensity, E. coli was overrepresented in the present study. All the isolates turned positive for ESBL, while 5.88 % of K. pneumoniae and 7.84 % of E. coli were positive for carbapenemases. Further, K. pneumoniae isolates from both sites showed 100 % resistance to beta-lactams, with resistance to other antibiotics such as tetracycline and meropenem. E. coli isolates were 100 % resistant to ceftazidime and cefuroxime, and 88.9 % were resistant to amoxicillin/clavulanate and ceftriaxone. The MAR indices observed in the present study for E. coli and K. pneumoniae were above the threshold value of 0.2 suggested a high risk of environmental contamination. These findings highlighted the need for routine surveillance at appropriate intervals for the presence of ESBL producing pathogens and other MDR pathogens in the environment to provide proper clinical management, develop various counter measures and policies to address and halt the spread of such potential threats.
Assuntos
Antibacterianos , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Águas Residuárias , beta-Lactamases , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , beta-Lactamases/metabolismo , Índia , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , beta-Lactamas/farmacologiaRESUMO
We report the discovery of a persistent presence of Vibrio cholerae at very low abundance in the inlet of a single wastewater treatment plant in Copenhagen, Denmark at least since 2015. Remarkably, no environmental or locally transmitted clinical case of V. cholerae has been reported in Denmark for more than 100 years. We, however, have recovered a near-complete genome out of 115 metagenomic sewage samples taken over the past 8 years, despite the extremely low relative abundance of one V. cholerae read out of 500,000 sequenced reads. Due to the very low relative abundance, routine screening of the individual samples did not reveal V. cholerae. The recovered genome lacks the gene responsible for cholerae toxin production, but although this strain may not pose an immediate public health risk, our finding illustrates the importance, challenges, and effectiveness of wastewater-based pathogen surveillance.
Assuntos
Esgotos , Vibrio cholerae , Dinamarca , Esgotos/microbiologia , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Vibrio cholerae/classificação , Genoma Bacteriano , Águas Residuárias/microbiologia , Cólera/microbiologia , Cólera/epidemiologiaRESUMO
Despite some effectiveness of wastewater treatment processes, microplastics accumulate in sewage sludge and their further use may contribute to the release of plastic microplastics into the environment. There is an urgent need to reduce the amount of microplastics in sewage sludge. Plastic particles serve as solid substrates for various microorganisms, promoting the formation of microbial biofilms with different metabolic activities. The biofilm environment associated with microplastics will determine the efficiency of treatment processes, especially biological methods, and the mechanisms of organic compound conversion. A significant source of microplastics is the land application of sewage sludge from wastewater treatment plants. The detrimental impact of microplastics affects soil enzymatic activity, soil microorganisms, flora, fauna, and plant production. This review article summarizes the development of research related to microplastics and discusses the issue of microplastic introduction from sewage sludge. Given that microplastics can contain complex composite polymers and form a plastisphere, further research is needed to understand their potential environmental impact, pathogenicity, and the characteristics of biofilms in wastewater treatment systems. The article also discusses the physicochemical properties of microplastics in wastewater treatment plants and their role in biofilm formation. Then, the article explained the impact of these properties on the possibility of the formation of biofilms on their surface due to the peculiar structure of microorganisms and also characterized what factors enable the formation of specific plastisphere in wastewater treatment plants. It highlights the urgent need to understand the basic information about microplastics to assess environmental toxicity more rationally, enabling better pollution control and the development of regulatory standards to manage microplastics entering the environment.
Assuntos
Biofilmes , Microbiota , Microplásticos , Esgotos , Águas Residuárias , Microplásticos/análise , Águas Residuárias/microbiologia , Águas Residuárias/química , Esgotos/microbiologia , Esgotos/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Bactérias/classificação , Bactérias/metabolismo , Plásticos/químicaRESUMO
A lytic Acinetobacter baumannii phage, isolate vB_AbaM_AB3P2, was isolated from a sewage treatment plant in China. A. baumannii phage vB_AbaM_AB3P2 has a dsDNA genome that is 44,824 bp in length with a G + C content of 37.75%. Ninety-six open reading frames were identified, and no genes for antibiotic resistance or virulence factors were found. Genomic and phylogenetic analysis of this phage revealed that it represents a new species in the genus Obolenskvirus. Phage vB_AbaM_AB3P2 has a short latent period (10 min) and high stability at 30-70°C and pH 2-10 and is potentially useful for controlling multi-drug-resistant A. baumannii.
Assuntos
Acinetobacter baumannii , Bacteriófagos , Bacteriófagos/genética , Acinetobacter baumannii/genética , Filogenia , Genômica , Myoviridae/genéticaRESUMO
BACKGROUND: Enteric hepatitis A virus (HAV) infections during childhood are often asymptomatic but may cause severe illness in adults. To improve public health surveillance we assessed the applicability of sewage monitoring during an HAV outbreak at a primary school. METHODS: Between October 19 and December 27, 2022, five symptomatic HAV cases were notified to the Public Health Service Amsterdam; all attended the same primary school. Passive samplers, small absorbent tools, were deployed in sewage near the school from November 14, 2022, to March 22, 2023. The absorbents were subjected to RNA extraction, HAV PCR testing, and, if positive, sequencing. PCR and sequencing were also performed on plasma and feces samples of HAV cases. RESULTS: In 22 out of 88 (25%) of sewage samples, HAV RNA was detected. All HAV-RNA-positive sewage samples until 8 February 2023 were subgenotype IB, matching the strain detected in all cases. Another strain of HAV (subgenotype IA) was detected in sewage from 15 February 2023 onwards, without associated cases. CONCLUSIONS: Passive sampler-based sewage monitoring is an effective method to rapidly detect HAV shedding linked to diagnosed cases. It detects unnoticed viral infections and allows monitoring of outbreaks. This suggests that passive sampler-based monitoring is a promising tool supporting the public health response during HAV and other outbreaks.
Assuntos
Surtos de Doenças , Hepatite A , RNA Viral , Instituições Acadêmicas , Esgotos , Humanos , Hepatite A/epidemiologia , Hepatite A/virologia , Hepatite A/diagnóstico , Países Baixos/epidemiologia , Esgotos/virologia , RNA Viral/genética , RNA Viral/análise , Criança , Vírus da Hepatite A/isolamento & purificação , Vírus da Hepatite A/genética , Fezes/virologia , Masculino , Feminino , Genótipo , AdolescenteRESUMO
A considerable number of micropollutants from human activities enter the wastewater network for removal. However, at the wastewater treatment plant (WWTP), some proportion of these compounds is retained in the sewage sludge (biosolids), and due to its high content of nutrients, sludge is widely applied as an agricultural fertilizer and becomes a means for the micropollutants to be introduced to the environment. Accordingly, a holistic semiquantitative nontarget screening was performed on sewage sludges from five different WWTPs using nanoflow liquid chromatography coupled to high-resolution Orbitrap mass spectrometry. Sixty-one inorganic elements were measured using inductively coupled plasma mass spectrometry. Across all sludges, the nontarget analysis workflow annotated >21,000 features with chemical structures, and after strict prioritization and filtering, 120 organic micropollutants with diverse chemical structures and applications such as pharmaceuticals, pesticides, flame retardants, and industrial and natural compounds were identified. None of the tested sludges were free from organic micropollutants. Pharmaceuticals contributed the largest share followed by pesticides and natural products. The predicted concentration of identified contaminants ranged between 0.2 and 10,881 ng/g dry matter. Through quantitative nontarget analysis, this study comprehensively demonstrated the occurrence of cocktails of micropollutants in sewage sludges.
Assuntos
Agricultura , Esgotos , Esgotos/química , Águas Residuárias/química , Monitoramento Ambiental , Poluentes Químicos da Água/análise , FertilizantesRESUMO
Metal(loid)s in sewage sludge (SS) are effectively immobilized after pyrolysis. However, the bioavailability and fate of the immobilized metal(loid)s in SS-derived biochar (SSB) following land application remain largely unknown. Here, the speciation and bioavailability evolution of SSB-borne Cr and Zn in soil were systematically investigated by combining pot and field trials and X-ray absorption spectroscopy. Results showed that approximately 58% of Cr existing as Cr(III)-humic complex in SS were transformed into Fe (hydr)oxide-bound Cr(III), while nano-ZnS in SS was transformed into stable ZnS and ferrihydrite-bound species (accounting for over 90% of Zn in SSB) during pyrolysis. All immobilized metal(loid)s, including Cr and Zn, in SSB tended to be slowly remobilized during aging in soil. This study highlighted that SSB acted as a dual role of source and sink of metal(loid)s in soil and posed potential risks by serving a greater role of a metal(loid) source than a sink when applied to uncontaminated soils. Nevertheless, SSB could impede the translocation of metal(loid)s from soil to crop compared to SS, where coexisting elements, including Fe, P, and Zn, played critical roles. These findings provide new insights for understanding the fate of SSB-borne metal(loid)s in soil and assessing the viability of pyrolyzing SS for land application.
Assuntos
Cromo , Pirólise , Esgotos , Zinco , Esgotos/química , Zinco/química , Cromo/química , Poluentes do Solo/química , Solo/química , Carvão Vegetal/químicaRESUMO
BACKGROUND: Poliovirus is a highly infectious enterovirus (EV) that primarily affects children and can lead to lifelong paralysis or even death. Vaccine-derived polioviruses (VDPVs) are a great threat since they are derived from the attenuated virus in the Oral Poliovirus Vaccine (OPV) and can mutate to a more virulent form. The purpose of this study was to identify VDPV serotype 2 through the year 2020-2021 via surveillance of sewage samples collected from different localities and governorates in Egypt and stool specimens from Acute Flaccid Paralysis (AFP) cases. Both were collected through the national poliovirus surveillance system and according to the guidelines recommended by the WHO. METHODS: A total of 1266 sewage samples and 3241 stool samples from January 2020 to December 2021 were investigated in the lab according to World Health Organization (WHO) protocol for the presence of Polioviruses by cell culture, molecular identification of positive isolates on L20B cell line was carried out using real-time polymerase chain reactions (RT-PCR). Any positive isolates for Poliovirus type 2 and isolates suspected of Vaccine Derived Poliovirus Type 1 and type 3 screened by (VDPV1) or Vaccine Poliovirus Type 3 (VDPV3) assay in RT-PCR were referred for VP1 genetic sequencing. RESULTS: The outbreak was caused by circulating VDPV2 (cVDPV2) strains started in January 2021. By the end of February 2021, a total of 11 cVDPV2s were detected in sewage samples from six governorates confirming the outbreak situation. One additional cVDPV2 was detected later in the sewage sample from Qena (June 2021). The first and only re-emergence of VDPV2 in stool samples during the outbreak was in contact with Luxor in June 2021. By November 2021, a total of 80 VDPVs were detected. The Egyptian Ministry of Health and Population (MOHP), in collaboration with the WHO, responded quickly by launching two massive vaccination campaigns targeting children under the age of five. Additionally, surveillance systems were strengthened to detect new cases and prevent further spread of the virus. CONCLUSION: The continued threat of poliovirus and VDPVs requires ongoing efforts to prevent their emergence and spread. Strategies such as improving immunization coverage, using genetically stable vaccines, and establishing surveillance systems are critical to achieving global eradication of poliovirus and efficient monitoring of VDPVs outbreaks.
Assuntos
Surtos de Doenças , Monitoramento Ambiental , Fezes , Poliomielite , Vacina Antipólio Oral , Poliovirus , Esgotos , Egito/epidemiologia , Humanos , Poliomielite/prevenção & controle , Poliomielite/epidemiologia , Poliomielite/virologia , Poliovirus/genética , Poliovirus/isolamento & purificação , Poliovirus/classificação , Poliovirus/imunologia , Esgotos/virologia , Fezes/virologia , Vacina Antipólio Oral/administração & dosagem , Pré-Escolar , Sorogrupo , Criança , LactenteRESUMO
The artificial sweetener acesulfame is a persistent pollutant in wastewater worldwide. So far, only a few bacterial isolates were recently found to degrade acesulfame efficiently. In Bosea and Chelatococcus strains, a Mn2+-dependent metallo-ß-lactamase-type sulfatase and an amidase signature family enzyme catalyze acesulfame hydrolysis via acetoacetamide-N-sulfonate to acetoacetate. Here, we describe a new acesulfame sulfatase in Shinella strains isolated from wastewater treatment plants in Germany. Their genomes do not encode the Mn2+-dependent sulfatase. Instead, a formylglycine-dependent sulfatase gene was found, together with the acetoacetamide-N-sulfonate amidase gene on a plasmid shared by all known acesulfame-degrading Shinella strains. Heterologous expression, proteomics, and size exclusion chromatography corroborated the physiological function of the Shinella sulfatase in acesulfame hydrolysis. Since both acesulfame sulfatase types are absent in other bacterial genomes or metagenome-assembled genomes, we surveyed 73 tera base pairs of wastewater-associated metagenome raw data sets. Bosea/Chelatococcus sulfatase gene signatures were regularly found from 2013, particularly in North America, Europe, and East Asia, whereas Shinella sulfatase gene signatures were first detected in 2020. Moreover, signatures for the Shinella sulfatase and amidase genes co-occur only in six data sets from China, Finland, and Mexico, suggesting that the Shinella genes were enriched or introduced quite recently in wastewater treatment facilities.
Assuntos
Sulfatases , Águas Residuárias , Sulfatases/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
Pseudomonas aeruginosa belong to the special pathogen group capable of causing serious infections, with high mortality rates. The aim of this study was to describe the antibiotic resistance and genomic characteristics of Pseudomonas aeruginosa belonging to international high-risk clone ST235 (GPAE0131 isolate), obtained from hospital wastewater. P. aeruginosa GPAE0131 was isolated from ward tertiary hospital in Brazil and the antibiotic resistance profile was determined by the disc-diffusion method. Genomic characteristics related to antibiotic resistance and virulence factors were evaluated by genomic DNA sequencing on the Illumina MiSeq platform and bioinformatic analysis. GPAE0131 isolate showed resistance to piperacillin-tazobactam, cefepime, ceftazidime, imipenem, meropenem, ciprofloxacin, levofloxacin and tobramycin. Resistome comprehend of resistance genes to ß-lactams (blaVIM-2, blaOXA-4, blaOXA-488, blaPDC-35), aminoglycosides (aph(3')-IIb, aac(6')-IIc, aac(6')-Ib9, aadA1), fosfomycin (fosA), chloramphenicol (catB7) and sulfonamides (sul1). Genome comparisons evidence insertion of blaVIM-2 and blaOXA-4 genes. GPAE0131 isolate was predicted to be pathogenic to humans and several virulence factors were found, including encoding gene for ExoU and exotoxin A. All of these features into a pathogenic international high-risk clone (ST235), classified as critical priority, stands out as public health concern due to the widespread dispersal of human pathogens through wastewater. It is suggested that mitigating measures be implemented, such as the treatment of hospital sewage and the addition of tertiary treatment, to prevent the escape of pathogens at this level into the environment.
Assuntos
Pseudomonas aeruginosa , Águas Residuárias , Águas Residuárias/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Humanos , Brasil , Antibacterianos/farmacologia , Hospitais , beta-Lactamases/genética , Fatores de Virulência/genética , GenômicaRESUMO
Sewage sludge incineration ash (SSIA) is rich in phosphorus (P), thus being considered as a reliable source of phosphorus recovery. Different P species behaved significant bioavailability. Based on this, a comprehensive investigation into the bioavailability transition path of P species during sewage sludge (SS) incineration was conducted. P predominantly existed in the form of inorganic phosphorus (IP) in SS with a higher concentration of non-apatite inorganic phosphorus (NAIP) and less concentration of apatite inorganic phosphorus (AP). During the SS incineration process, OP existed in the flocs and cell structures of SS underwent destruction, the released P then combined with metal elements such as Ca, Mg, Fe, and Al to form AP species (Ca/Mg-P) and NAIP species (Fe/Al/Mn-P), and the NAIP decomposition to release into gas phase. This was the initial step for enhancing the bioavailability of P species. As temperature increased and the incineration process progressed, the low-temperature-resistant NAIP dissociated, and the metal-binding sites of Al, Fe and Mn in NAIP species were gradually replaced by the Ca and Mg thus forming thermal stability AP species (Ca/Mg-P, such as CaHPO4, Ca2PO4Cl, and Mg3(PO4)2 et al.). This step was crucial for the bioavailability improvement of P species during the incineration process. Therefore, the IP proportions in TP were extremely high (ï¼98%), and this value gradually increased as incineration temperature raised. The higher incineration temperature, the lower NAIP concentration and higher AP concentration. Besides, additives such as coal/rice husk/eggshell played a significant affect. Additives wither higher Ca content were inclined to react with P to form Ca/Mg-P (AP), while the presence of SO2 would react with Ca metals to form CaSO4 thus inhibiting the formation of AP species (such as CaHPO4 and CaPO4Cl). This results could provide theoretical support for the efficient and directional migration of P during sewage sludge incineration.
Assuntos
Fósforo , Esgotos , Disponibilidade Biológica , Incineração , Temperatura AltaRESUMO
Reducing N2O emissions is key to controlling greenhouse gases (GHG) in wastewater treatment plants (WWTPs). Although studies have examined the effects of dissolved oxygen (DO) on N2O emissions during nitrogen removal, the precise effects of aeration rate remain unclear. This study aimed to fill this research gap by investigating the influence of dynamic aeration rates on N2O emissions in an alternating anoxic-oxic sequencing batch reactor system. The emergence of DO breakthrough points indicated that the conversion of ammonia nitrogen to nitrite and the release of N2O were nearly complete. Approximately 91.73 ± 3.35% of N2O was released between the start of aeration and the DO breakthrough point. Compared to a fixed aeration rate, dynamically adjusting the aeration rates could reduce N2O production by up to 48.6%. Structural equation modeling revealed that aeration rate and total nitrogen directly or indirectly had significant effects on the N2O production. A novel regression model was developed to estimate N2O production based on energy consumption (aeration flux), water quality (total nitrogen), and GHG emissions (N2O). This study emphasizes the potential of optimizing aeration strategies in WWTPs to significantly reduce GHG and improve environmental sustainability.
Assuntos
Reatores Biológicos , Óxido Nitroso , Óxido Nitroso/análise , Oxigênio/análise , Eliminação de Resíduos Líquidos/métodos , Gases de Efeito Estufa/análise , Águas Residuárias/química , Águas Residuárias/análise , Poluentes Atmosféricos/análiseRESUMO
Unsustainable agricultural intensification and climate change effects have caused chronic soil depletion in most arid and semi-arid croplands. As such, the land application of urban sewage sludge (USS) has been regulated in several countries as an alternative soil conditioner with recycling benefits. However, the risks of multi-contamination have made its agricultural reuse debatable. Accordingly, this study explored the long-term the impact of repetitive USS applications with increasing rates (0, 40, 80, and 120 t ha-1 year-1) on a sandy soil properties. A special focus was on the spread of antibiotic-resistant bacteria, metal-resistant bacteria and corresponding resistance genes in soil (ARB, MRB, ARGs and MRGs, respectively). The outcomes showed a dose-dependent variation of different soil parameters including the increase of heavy metal content and total heterotrophic bacteria (THB) up to the highest sludge application rate. Besides, the two last sludge lots applied in fall 2019 and 2020 contained cultivable ARB for all addressed antibiotics at much higher counts than in corresponding treated soils. Interestingly, the average index of antibiotic resistance (ARB/THB) increased in the USS used in fall 2020 compared to 2019 (from 6.2% to 9.4%). This indicates that factors such as fluctuations in wastewater quality, treatments operations, and extensive antibiotic use following the outbreak of the COVID-19 pandemic in early 2020 could have caused this variation. The molecular assessment of bacterial resistance resulted in the identification of three ARGs (mefA, sul1 and sul2), one MRG (czcA) and one integron (intI1). This might have implications on resistance co-selection, which can pose a threat to human health via contaminated crops.
RESUMO
A composite material, cow dung-doped sludge biochar (Zn@SBC-CD), was synthesized by one-step pyrolysis using ZnCl2 as an activating agent and applied to a catalytic ozonation process (COP) for methylene blue (MB) removal. SEM, XRD, FTIR, XPS and BET analyses were performed to characterize the biochar (BC) catalysts. Zn@SBC-CD had high graphitization degree, abundant active sites and uniform distribution of Zn on its surface. Complete removal of MB was achieved within 10 min, with a removal rate much higher than that of ozone alone (32.4%), implying the excellent ozone activation performance of Zn@SBC-CD. The influence of experimental parameters on MB removal efficiency was examined. Under the optimum conditions in terms of ozone dose 0.04 mg/mL, catalyst dose 400 mg/L and pH 6.0, COD was completely removed after 20 min. Electron paramagnetic resonance (EPR) analysis revealed radical and non-radical pathways were involved in MB degradation. The Zn@SBC-CD/O3 system generated superoxide anion radicals (â¢O2-), which were the main active species for MB removal, through adsorption, transformation, and transfer, Furthermore, Zn@SBC-CD exhibited good reusability and stability in cycling experiments. This study provides a novel approach for the utilization of cow dung and sludge in synthesis of functional biocatalysts and application in organic wastewater treatment.
Assuntos
Carvão Vegetal , Grafite , Ozônio , Ozônio/química , Carvão Vegetal/química , Animais , Bovinos , Catálise , Grafite/química , Esgotos/química , Azul de Metileno/química , Radicais Livres/química , Poluentes Químicos da Água/química , Esterco/análiseRESUMO
Controlling sludge concentration is an effective means to achieve PN. In this article, the reactor used domestic sewage as raw water and promoted the high enrichment of anammox bacteria by controlling the MLVSS of flocs to 1000-1500 mg/L and increasing the concentration of filler sludge. The measures to reduce the concentration of flocculent sludge increased the proliferation rate of the biofilm and provided sufficient substrate for AnAOB. After 102 days of operation, the abundance of Candidatus Brocadia increased from 0.43% during inoculation to 23.56% in phase VI. The ability of the microbial community to utilize energy metabolism and produce ATP was significantly improved, and the appropriate distribution of anammox bacteria and nitrifying, denitrifying bacteria in the ecological niche led to its high enrichment. In summary, this study proposes a strategy to promote the high enrichment of anammox bacteria in mainstream domestic sewage without adding any chemicals.
RESUMO
Ofloxacin (OFL) is a typical fluoroquinolone antibiotic widely detected in rural domestic sewage, however, its effects on the performance of aerobic biofilm systems during sewage treatment process remain poorly understood. We carried out an aerobic biofilm experiment to explore how the OFL with different concentrations affects the pollutant removal efficiency of rural domestic sewage. Results demonstrated that the OFL negatively affected pollutant removal in aerobic biofilm systems. High OFL levels resulted in a decrease in removal efficiency: 9.33% for chemical oxygen demand (COD), 18.57% for ammonium (NH4+-N), and 8.49% for total phosphorus (TP) after 35 days. The findings related to the chemical and biological properties of the biofilm revealed that the OFL exposure triggered oxidative stress and SOS responses, decreased the live cell number and extracellular polymeric substance content of biofilm, and altered bacterial community composition. More specifically, the relative abundance of key genera linked to COD (e.g., Rhodobacter), NH4+-N (e.g., Nitrosomonas), and TP (e.g., Dechlorimonas) removal was decreased. Such the OFL-induced decrease of these genera might result in the down-regulation of carbon degradation (amyA), ammonia oxidation (hao), and phosphorus adsorption (ppx) functional genes. The conventional pollutants (COD, NH4+-N, and TP) removal was directly affected by biofilm resistance, functional genes, and bacterial community under OFL exposure, and the bacterial community played a more dominant role based on partial least-squares path model analysis. These findings will provide valuable insights into understanding how antibiotics impact the performance of aerobic biofilm systems during rural domestic sewage treatment.
Assuntos
Poluentes Ambientais , Ofloxacino , Ofloxacino/farmacologia , Esgotos/microbiologia , Matriz Extracelular de Substâncias Poliméricas , Bactérias/genética , Biofilmes , Fósforo , Nitrogênio , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodosRESUMO
The biofilm sequencing batch reactor (BSBR) technique has been deployed in the laboratory to enrich phosphorus from simulated wastewater, but it is still not clear what its performance will be when real world sewage is used. In this work, the effluent from the multi-stage anoxic-oxic (AO) activated sludge process at a sewage plant was used as the feed water for a BSBR pilot system, which had three reactors operating at different levels of dissolved oxygen (DO). The phosphorus adsorption and release, the biofilm growth, and the extracellular polymeric substances (EPS) components and contents were examined. The microbial communities and the signaling molecules N-acyl-l-homoserine lactones (AHLs) were also analyzed. Gratifyingly, the BSBR process successfully processed the treated sewage, and the biofilm developed phosphorus accumulation capability within 40 days. After entering stable operation, the system concentrated phosphate from 2.59 ± 0.77 mg/L in the influent to as much as 81.64 mg/L in the recovery liquid. Sludge discharge had profound impacts on all aspects of BSBR, and it was carried out successfully when the phosphorus absorption capacity of the biofilm alone was comparable to that of the reactor containing the activated sludge. Shortly after the sludge discharge, the phosphate concentration of the recovery liquid surged from 50 to 140 mg/L, the biofilm thickness grew from 20.56 to 67.32 µm, and the diversity of the microbial population plunged. Sludge discharge stimulated Candidatus competibacter to produce a large amount of AHLs, which was key in culturing the biofilm. Among the AHLs, both C10-HSL and 3OC12-HSL were significantly positively correlated with EPS and the abundance of Candidatus competibacter. The current results demonstrated BSBR as a viable option to enrich phosphorus from real world sewage with low phosphorus content and fluctuating chemistry. The mechanistic explorations also provided theoretical guidance for cultivating phosphorus-accumulating biofilms.