Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(21): 6016-6034.e25, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39243764

RESUMO

There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.


Assuntos
Proteína Morfogenética Óssea 2 , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Melanoma , Microambiente Tumoral , Animais , Masculino , Camundongos , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Feminino , Humanos , Linhagem Celular Tumoral , Proteína Morfogenética Óssea 2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Fibroblastos/metabolismo , Invasividade Neoplásica , Receptor Tirosina Quinase Axl , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Senescência Celular , Caracteres Sexuais , Proliferação de Células , Envelhecimento , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753512

RESUMO

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Assuntos
Compostos Benzidrílicos , Neurônios , Fenóis , Diferenciação Sexual , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Feminino , Masculino , Camundongos , Diferenciação Sexual/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Arginina Vasopressina/metabolismo , Vasopressinas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Camundongos Endogâmicos C57BL , Estrogênios/metabolismo , Estrogênios/farmacologia
3.
EMBO J ; 41(23): e111192, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314682

RESUMO

Intracerebral hemorrhages are recognized risk factors for neurodevelopmental disorders and represent early biomarkers for cognitive dysfunction and mental disability, but the pathways leading to their occurrence are not well defined. We report that a single intrauterine exposure of the immunostimulant Poly I:C to pregnant mice at gestational day 9, which models a prenatal viral infection and the consequent maternal immune activation, induces the defective formation of brain vessels and causes intracerebral hemorrhagic events, specifically in male offspring. We demonstrate that maternal immune activation promotes the production of the TGF-ß1 active form and the consequent enhancement of pSMAD1-5 in males' brain endothelial cells. TGF-ß1, in combination with IL-1ß, reduces the endothelial expression of CD146 and claudin-5, alters the endothelium-pericyte interplay resulting in low pericyte coverage, and increases hemorrhagic events in the adult offspring. By showing that exposure to Poly I:C at the beginning of fetal cerebral angiogenesis results in sex-specific alterations of brain vessels, we provide a mechanistic framework for the association between intragravidic infections and anomalies of the neural vasculature, which may contribute to neuropsychiatric disorders.


Assuntos
Hemorragia Cerebral , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Camundongos , Gravidez , Comportamento Animal , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Poli I-C/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Fator de Crescimento Transformador beta1/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(10): e2212646120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848562

RESUMO

The sexually dimorphic nucleus of the preoptic area (SDN-POA) is the oldest and most robust sex difference reported in mammalian brain and is singular for its presence across a wide range of species from rodents to ungulates to man. This small collection of Nissl-dense neurons is reliably larger in volume in males. Despite its notoriety and intense interrogation, both the mechanism establishing the sex difference and the functional role of the SDN have remained elusive. Convergent evidence from rodent studies led to the conclusion that testicular androgens aromatized to estrogens are neuroprotective in males and that higher apoptosis (naturally occurring cell death) in females determines their smaller SDN. In several species, including humans, a smaller SDN correlates with a preference for mating with males. We report here that this volume difference is dependent upon a participatory role of phagocytic microglia which engulf more neurons in the female SDN and assure their destruction. Selectively blocking microglia phagocytosis temporarily spared neurons from apoptotic death and increased SDN volume in females without hormone treatment. Increasing the number of neurons in the SDN in neonatal females resulted in loss of preference for male odors in adulthood, an effect paralleled by dampened excitation of SDN neurons as evidenced by reduced immediate early gene (IEG) expression when exposed to male urine. Thus, the mechanism establishing a sex difference in SDN volume includes an essential role for microglia, and SDN function as a regulator of sexual partner preference is confirmed.


Assuntos
Microglia , Área Pré-Óptica , Humanos , Ratos , Feminino , Masculino , Animais , Comportamento Sexual , Reprodução , Fagocitose , Mamíferos
5.
Am J Respir Cell Mol Biol ; 71(4): 453-463, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38864769

RESUMO

Sex differences are recognized in pulmonary hypertension. However, the progression of disease with regard to vascular lesion formation and circulating cytokines/chemokines is unknown. To determine whether vascular lesion formation, changes in hemodynamics, and alterations in circulating chemokines/cytokines differ between males and females, we used a progressive model of pulmonary arterial hypertension (PAH), Sugen/hypoxia, and analyzed cohorts of male and female rats at time points suggested to indicate worsening disease. Our analysis included echocardiography for hemodynamics, morphometry, immunofluoresecence, and chemokine/cytokine analysis of plasma at each time point in both sexes. We found that male rats had significantly increased Fulton index, compared with those for females at each time point, as well as increased medial artery thickening at 8 weeks of PAH. Furthermore, females exhibited fewer obliterative vascular lesions than males at our latest time point. Our data also show increased IL-4, granulocyte-macrophage colony-stimulating factor, IL-10, and macrophage interacting protein-1α that were not observed in females, whereas females were observed to have increased RANTES (whose name derives from Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted) and CXCL-10 that were not found in males. Males also have increased infiltrating macrophages in vascular lesions, compared with females. We found that development of progressive PAH in hemodynamics, morphology, and chemokine/cytokine circulation differs significantly between males and females. These data suggest a macrophage-driven pathology in males, whereas there may be T cell protection from vascular damage in females with PAH.


Assuntos
Quimiocinas , Citocinas , Modelos Animais de Doenças , Hemodinâmica , Animais , Masculino , Feminino , Citocinas/metabolismo , Citocinas/sangue , Quimiocinas/metabolismo , Quimiocinas/sangue , Caracteres Sexuais , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Fatores Sexuais
6.
Am J Physiol Endocrinol Metab ; 326(1): E29-E37, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991452

RESUMO

Adaptive thermogenesis is a vital physiological process for small endotherms. Female animals usually are more sensitive to cold temperature due to anatomical differences. Whether there is a sex difference at a molecular level is unclear. Stress granules (SGs) are dynamic organelles in which untranslated mRNAs reside during cellular stress. We hypothesize that the prompt response of SGs to cold stress can reveal the molecular difference between sexes. By analyzing the content in SGs of brown adipose tissue (BAT) at the early phase of cold stress for both sexes, we found more diverse mRNAs docked in the SGs in male mice and these mRNAs representing an extensive cellular reprogramming including apoptosis process and cold-induced thermogenesis. In female mice, the mRNAs in SGs dominantly were comprised of genes regulating ribonucleoprotein complex biogenesis. Conversely, the proteome in SGs was commonly characterized as structure molecules and RNA processing for both sexes. A spectrum of eukaryotic initiation factors (eIFs) was detected in the SGs of both female and male BAT, while those remained unchanged upon cold stress in male mice, various eIF3 and eIF4G isoforms were found reduced in female mice. Taken together, the unique features in SGs of male BAT reflected a prompt uncoupling protein-1 (UCP1) induction which was absent in female, and female, by contrast, were prepared for long-term transcriptional and translational adaptations.NEW & NOTEWORTHY The proteome analysis reveals that stress granules are the predominant form of cytosolic messenger ribonucleoproteins of brown adipose tissue (BAT) at the early phase of cold exposure in mice for both sexes. The transcriptome of stress granules of BAT unveils a sex difference of molecular response in early phase of cold exposure in mice, and such difference prepares for a prompt response to cold stress in male mice while for long-term adaptation in female mice.


Assuntos
Caracteres Sexuais , Grânulos de Estresse , Camundongos , Feminino , Masculino , Animais , Proteoma , Isoformas de Proteínas , Tecido Adiposo Marrom/fisiologia , Termogênese/fisiologia , Temperatura Baixa , Proteína Desacopladora 1/genética , Camundongos Endogâmicos C57BL
7.
J Neuroinflammation ; 21(1): 1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178204

RESUMO

BACKGROUND: Late-onset Alzheimer's disease (LOAD) is the most common form of dementia; it disproportionally affects women in terms of both incidence rates and severity of progression. The cellular and molecular mechanisms underlying this clinical phenomenon remain elusive and ill-defined. METHODS: In-depth analyses were performed with multiple human LOAD single-nucleus transcriptome datasets to thoroughly characterize cell populations in the cerebral cortex. ROSMAP bulk human brain tissue transcriptome and DNA methylome datasets were also included for validation. Detailed assessments of microglial cell subpopulations and their relevance to sex-biased changes at the tissue level were performed. Clinical trait associations, cell evolutionary trajectories, and transcription regulon analyses were conducted. RESULTS: The relative numbers of functionally defective microglia were aberrantly increased uniquely among affected females. Substratification of the microglia into different subtypes according to their transcriptomic signatures identified a group of female-enriched and disease-associated microglia (FDAMic), the numbers of which were positively associated with disease severity. Phenotypically, these cells exhibit transcriptomic signatures that support active proliferation, MHC class II autoantigen presentation and amyloid-ß binding, but they are also likely defective in phagocytosis. FDAMic are likely evolved from female activated response microglia (ARMic) with an APOE4 background and compromised estrogen receptor (ER) signaling that is deemed to be active among most subtypes of microglia. CONCLUSION: This study offered important insights at both the cellular and molecular levels into how ER signaling affects microglial heterogeneity and function. FDAMic are associated with more advanced pathologies and severe trends of cognitive decline. Their emergence could, at least in part, explain the phenomenon of greater penetrance of the APOE4 genotype found in females. The biases of FDAMic emergence toward female sex and APOE4 status may also explain why hormone replacement therapy is more effective in APOE4 carriers. The pathologic nature of FDAMic suggests that selective modulations of these cells may help to regain brain neuroimmune homeostasis, serving as a new target for future drug development.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Doença de Alzheimer/patologia , Microglia/metabolismo , Caracteres Sexuais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo
8.
Fish Shellfish Immunol ; 151: 109735, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945414

RESUMO

Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.


Assuntos
Proteínas de Artrópodes , Regulação da Expressão Gênica , Neuropeptídeos , Caracteres Sexuais , Animais , Masculino , Feminino , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismo , Regulação da Expressão Gênica/imunologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Astacoidea/genética , Astacoidea/imunologia , Intestinos , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Imunidade Inata/genética , Filogenia , Perfilação da Expressão Gênica , Sequência de Aminoácidos , Alinhamento de Sequência
9.
Can J Physiol Pharmacol ; 102(9): 498-510, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427976

RESUMO

Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality, affecting people of all races, ages, and sexes. Substantial sex dimorphism exists in the prevalence, manifestation, and outcomes of CVDs. Understanding the role of sex hormones as well as sex-hormone-independent epigenetic mechanisms could play a crucial role in developing effective and sex-specific cardiovascular therapeutics. Existing research highlights significant disparities in sex hormones, epigenetic regulators, and gene expression related to cardiac health, emphasizing the need for a nuanced understanding of these variations between men and women. Despite these differences, current treatment approaches for CVDs often lack sex-specific considerations. A pivotal shift toward personalized medicine, informed by comprehensive insights into sex-specific DNA methylation, histone modifications, and non-coding RNA dynamics, holds the potential to revolutionize CVD management. By understanding sex-specific epigenetic complexities, independent of sex hormone influence, future cardiovascular research can be tailored to achieve effective diagnostic and therapeutic interventions for both men and women. This review summarizes the current knowledge and gaps in epigenetic mechanisms and sex dimorphism implicated in CVDs.


Assuntos
Doenças Cardiovasculares , Epigênese Genética , Caracteres Sexuais , Humanos , Doenças Cardiovasculares/genética , Hormônios Esteroides Gonadais/metabolismo , Metilação de DNA/genética , Animais , Feminino , Masculino , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Fatores Sexuais
10.
BMC Musculoskelet Disord ; 25(1): 490, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914997

RESUMO

BACKGROUND: Ankylosing spondylitis (AS) with radiographic damage is more prevalent in men than in women. IL-17, which is mainly secreted from peripheral blood mononuclear cells (PBMCs), plays an important role in the development of AS. Its expression is different between male and female. However, it is still unclear whether sex dimorphism of IL-17 contribute to sex differences in AS. METHODS: GSE221786, GSE73754, GSE25101, GSE181364 and GSE205812 datasets were collected from the Gene Expression Omnibus (GEO) database. Differential expressed genes (DEGs) were analyzed with the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods. CIBERSORTx and EcoTyper algorithms were used for immune infiltration analyses. Machine learning based on the XGBoost algorithm model was used to identify the impact of DEGs. The Connectivity Map (CMAP) database was used as a drug discovery tool for exploring potential drugs based on the DEGs. RESULTS: According to immune infiltration analyses, T cells accounted for the largest proportion of IL-17-secreting PBMCs, and KEGG analyses suggested an enhanced activation of mast cells among male AS patients, whereas the expression of TNF was higher in female AS patients. Other signaling pathways, including those involving metastasis-associated 1 family member 3 (MAT3) or proteasome, were found to be more activated in male AS patients. Regarding metabolic patterns, oxidative phosphorylation pathways and lipid oxidation were significantly upregulated in male AS patients. In XGBoost algorithm model, DEGs including METRN and TMC4 played important roles in the disease process. we integrated the CMAP database for systematic analyses of polypharmacology and drug repurposing, which indicated that atorvastatin, famciclocir, ATN-161 and taselisib may be applicable to the treatment of AS. CONCLUSIONS: We analyzed the sex dimorphism of IL-17-secreting PBMCs in AS. The results showed that mast cell activation was stronger in males, while the expression of TNF was higher in females. In addition, through machine learning and the CMAP database, we found that genes such as METRN and TMC4 may promote the development of AS, and drugs such as atorvastatin potentially could be used for AS treatment.


Assuntos
Biologia Computacional , Interleucina-17 , Leucócitos Mononucleares , Aprendizado de Máquina , Caracteres Sexuais , Espondilite Anquilosante , Feminino , Humanos , Masculino , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Interleucina-17/metabolismo , Interleucina-17/genética , Leucócitos Mononucleares/metabolismo , Espondilite Anquilosante/genética , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/metabolismo
11.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125723

RESUMO

Sexually dimorphic traits such as growth and body size are often found in various crustaceans. Methyl farnesoate (MF), the main active form of sesquiterpenoid hormone in crustaceans, plays vital roles in the regulation of their molting and reproduction. However, understanding on the sex differences in their hormonal regulation is limited. Here, we carried out a comprehensive investigation on sexual dimorphic responses to MF in the hepatopancreas of the most dominant aquacultural crustacean-the white-leg shrimp (Litopenaeus vannamei). Through comparative transcriptomic analysis of the main MF target tissue (hepatopancreas) from both female and male L. vannamei, two sets of sex-specific and four sets of sex-dose-specific differentially expressed transcripts (DETs) were identified after different doses of MF injection. Functional analysis of DETs showed that the male-specific DETs were mainly related to sugar and lipid metabolism, of which multiple chitinases were significantly up-regulated. In contrast, the female-specific DETs were mainly related to miRNA processing and immune responses. Further co-expression network analysis revealed 8 sex-specific response modules and 55 key regulatory transcripts, of which several key transcripts of genes related to energy metabolism and immune responses were identified, such as arginine kinase, tropomyosin, elongation of very long chain fatty acids protein 6, thioredoxin reductase, cysteine dioxygenase, lysosomal acid lipase, estradiol 17-beta-dehydrogenase 8, and sodium/potassium-transporting ATPase subunit alpha. Altogether, our study demonstrates the sex differences in the hormonal regulatory networks of L. vannamei, providing new insights into the molecular basis of MF regulatory mechanisms and sex dimorphism in prawn aquaculture.


Assuntos
Perfilação da Expressão Gênica , Hepatopâncreas , Penaeidae , Caracteres Sexuais , Transcriptoma , Animais , Hepatopâncreas/metabolismo , Hepatopâncreas/efeitos dos fármacos , Feminino , Masculino , Penaeidae/genética , Penaeidae/metabolismo , Penaeidae/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo
12.
BMC Oral Health ; 24(1): 200, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326901

RESUMO

INTRODUCTION: Morphological and morphometric features of the teeth are of interest to various clinical and academic dental and medical fields including prosthodontics, orthodontics, anatomy and anthropology, pathology, archeology, and forensic dentistry. These have been more or less researched in the case of the permanent dentition. However when it comes to the primary dentition, the literature is scarce and controversial. No study worldwide exists on the cutoff points (thresholds) for sex identification; no study exists on metric or nonmetric traits of deciduous teeth in Iranians. Hence, the aim of the study was to assess both the metric and nonmetric traits of primary molars, as well as their cut-off points for sex identification. METHODS: In this epidemiological cross-sectional study, pretreatment casts of 110 children (51 boys and 59 girls) aged 6 to 12 years were collected. Maxillary and mandibular first and second primary molars were evaluated regarding their metric traits (mesiodistal and buccolingual widths) and 9 nonmetric traits (Accessory cusp on the upper D, Accessory cusp on the lower D, Fifth cusp on the upper E, Carabelli's cusp on the upper E, Protostylid on the lower E, Fifth cusp on the lower E, Sixth cusp on the lower E, Tuberculum intermedium [metaconulid] on the lower E, and Deflecting wrinkle on the lower E). ROC curves were used to identify cut-off points for sex determination as well as the usefulness of metric measurements for this purpose. Data were analyzed using independent-samples and paired-samples t-tests, McNemar, Fisher, and chi-square tests, plus Pearson and Spearman correlation coefficients (α = 0.05). RESULTS: All the primary molars' coronal dimensions (both mesiodistal and buccolingual) were extremely useful for sex identification (ROC curves, all P values ≤ 0.0000099). Especially, the mandibular primary molars (areas under ROC curves [AUCs] between 85.6 and 90.4%, P values ≤ 0.0000006) were more useful than the maxillary ones (AUCs between 80.4 and 83.1%, P values ≤ 0. 0000099). In the mandible, the first primary molar (maximum AUC = 90.4%) was better than the second molar (maximum AUC = 86.0%). The optimum thresholds for sex determination were reported. Sex dimorphism was significant in buccolingual and mesiodistal crown widths of all the primary molars (all P values ≤ 0.000132), but it was seen only in the case of 2 nonmetric traits: Deflecting wrinkle (P = 0.001) and Tuberculum intermedium (metaconulid, P = 0.029) on the lower Es, taking into account the unilateral and bilateral cases. The occurrence of nonmetric traits was symmetrical between the right and left sides (all P values ≥ 0.250). All mesiodistal and two buccolingual molar measurements were as well symmetrical (P > 0.1); however, two buccolingual measurements were asymmetrical: in the case of the maxillary E (P = 0.0002) and mandibular D (P = 0.019). There were three weak-to-moderate correlations between the nonmetric traits of the mandibular second molars (Spearman correlations between 22.7 and 37.5%, P values ≤ 0.045). Up to 6 concurrent nonmetric traits were observed in the sample, with 53.6% of the sample showing at least 2 concurrent nonmetric traits at the same time, without any sex dimorphism (P = 0.658). CONCLUSION: Sex dimorphism exists considerably in primary molars' sizes, but it is not as prevalent in their nonmetric traits or abnormalities. Primary molars' crown sizes are useful for sex identification; we calculated optimum cut-off points for this purpose, for the first time.


Assuntos
População do Oriente Médio , Dente Molar , Dente , Humanos , Masculino , Criança , Feminino , Estudos Transversais , Irã (Geográfico)/epidemiologia , Dente Molar/anatomia & histologia , Dente/anatomia & histologia , Odontometria
13.
Semin Cancer Biol ; 86(Pt 3): 166-179, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35278635

RESUMO

Cancer represents a significant cause of death and suffering in both the developed and developing countries. Key underlying issues in the mortality of cancer are delayed diagnosis and resistance to treatments. However, improvements in biomarkers represent one important step that can be taken for alleviating the suffering caused by malignancy. Precision-based medicine is promising for revolutionizing diagnostic and treatment strategies for cancer patients worldwide. Contemporary methods, including various omics and systems biology approaches, as well as advanced digital imaging and artificial intelligence, allow more accurate assessment of tumor characteristics at the patient level. As a result, treatment strategies can be specifically tailored and adapted for individual and/or groups of patients that carry certain tumor characteristics. This includes immunotherapy, which is based on characterization of the immunosuppressive tumor microenvironment (TME) and, more specifically, the presence and activity of immune cell subsets. Unfortunately, while it is increasingly clear that gender strongly affects immune regulation and response, there is a knowledge gap concerning differences in sex-specific immune responses and how these contribute to the immunosuppressive TME and the response to immunotherapy. In fact, sex dimorphism is poorly understood in cancer progression and is typically ignored in current clinical practice. In this review, we aim to survey the available literature and highlight the existing knowledge gap in order to encourage further studies that would contribute to understanding both gender-biased immunosuppression in the TME and the driver of tumor progression towards invasive and metastatic disease. The review highlights the need to include sex optimized/genderized medicine as a new concept in future medicine cancer diagnostics and treatments.


Assuntos
Neoplasias , Microambiente Tumoral , Masculino , Feminino , Humanos , Caracteres Sexuais , Inteligência Artificial , Imunoterapia/métodos , Neoplasias/diagnóstico , Neoplasias/etiologia , Neoplasias/terapia , Fatores Imunológicos
14.
BMC Genomics ; 24(1): 374, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403010

RESUMO

BACKGROUND: Cancer-cachexia (CC) is a debilitating condition affecting up to 80% of cancer patients and contributing to 40% of cancer-related deaths. While evidence suggests biological sex differences in the development of CC, assessments of the female transcriptome in CC are lacking, and direct comparisons between sexes are scarce. This study aimed to define the time course of Lewis lung carcinoma (LLC)-induced CC in females using transcriptomics, while directly comparing biological sex differences. RESULTS: We found the global gene expression of the gastrocnemius muscle of female mice revealed biphasic transcriptomic alterations, with one at 1 week following tumor allograft and another during the later stages of cachexia development. The early phase was associated with the upregulation of extracellular-matrix pathways, while the later phase was characterized by the downregulation of oxidative phosphorylation, electron transport chain, and TCA cycle. When DEGs were compared to a known list of mitochondrial genes (MitoCarta), ~ 47% of these genes were differently expressed in females exhibiting global cachexia, suggesting transcriptional changes to mitochondrial gene expression happens concomitantly to functional impairments previously published. In contrast, the JAK-STAT pathway was upregulated in both the early and late stages of CC. Additionally, we observed a consistent downregulation of Type-II Interferon signaling genes in females, which was associated with protection in skeletal muscle atrophy despite systemic cachexia. Upregulation of Interferon signaling was noted in the gastrocnemius muscle of cachectic and atrophic male mice. Comparison of female tumor-bearing mice with males revealed ~ 70% of DEGs were distinct between sexes in cachectic animals, demonstrating dimorphic mechanisms of CC. CONCLUSION: Our findings suggest biphasic disruptions in the transcriptome of female LLC tumor-bearing mice: an early phase associated with ECM remodeling and a late phase, accompanied by the onset of systemic cachexia, affecting overall muscle energy metabolism. Notably, ~ 2/3 of DEGs in CC are biologically sex-specific, providing evidence of dimorphic mechanisms of cachexia between sexes. Downregulation of Type-II Interferon signaling genes appears specific to CC development in females, suggesting a new biological sex-specific marker of CC not reliant on the loss of muscle mass, that might represent a protective mechanism against muscle loss in CC in female mice.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Feminino , Masculino , Camundongos , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/patologia , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Transcriptoma , Interferons/metabolismo
15.
Annu Rev Nutr ; 42: 227-250, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35417195

RESUMO

Biological sex is a fundamental source of phenotypic variability across species. Males and females have different nutritional needs and exhibit differences in nutrient digestion and utilization, leading to different health outcomes throughout life. With personalized nutrition gaining popularity in scientific research and clinical practice, it is important to understand the fundamentals of sex differences in nutrition research. Here, we review key studies that investigate sex dimorphism in nutrition research: sex differences in nutrient intake and metabolism, sex-dimorphic response in nutrient-restricted conditions, and sex differences in diet and gut microbiome interactions. Within each area above, factors from sex chromosomes, sex hormones, and sex-specific loci are highlighted.


Assuntos
Dieta , Microbioma Gastrointestinal , Animais , Ingestão de Energia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Modelos Animais , Estado Nutricional , Caracteres Sexuais
16.
Exp Brain Res ; 241(4): 1199-1206, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36892611

RESUMO

Environmental motion can induce physiological stress and trigger motion sickness. In these situations, lower-than-normal levels of adrenocorticotropic hormone (ACTH) have been linked with increased susceptibility to motion sickness in healthy individuals. However, whether patients with primary adrenal insufficiency, who typically have altered ACTH levels compared to the normal population, exhibit alterations in sickness susceptibility remains unknown. To address this, we recruited 78 patients with primary adrenal insufficiency and compared changes in the motion sickness susceptibility scores from 10 years prior to diagnosis (i.e. retrospective sickness rating) with the current sickness measures (post-diagnosis), using the validated motion sickness susceptibility questionnaire (MSSQ). Group analysis revealed that motion sickness susceptibility pre-diagnosis did not differ between controls and patients. We observed that following treatment, current measures of motion sickness were significantly increased in patients and subsequent analysis revealed that this increase was primarily in female patients with primary adrenal insufficiency. These observations corroborate the role of stress hormones in modulating sickness susceptibility and support the notion of a sexually dimorphic adrenal cortex as we only observed selective enhancement in females. A potential mechanism to account for our novel observation remains obscure, but we speculate that it may reflect a complex sex-disease-drug interaction.


Assuntos
Doença de Addison , Enjoo devido ao Movimento , Humanos , Feminino , Caracteres Sexuais , Estudos Retrospectivos , Enjoo devido ao Movimento/etiologia , Hormônio Adrenocorticotrópico
17.
Cereb Cortex ; 32(11): 2478-2491, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34643680

RESUMO

Sex differences in human emotion and related decision-making behaviors are recognized, which can be traced back early in development. However, our understanding of their underlying neurodevelopmental mechanisms remains elusive. Using developmental functional magnetic resonance imaging and computational approach, we investigated developmental sex differences in latent decision-making dynamics during negative emotion processing and related neurocognitive pathways in 243 school-aged children and 78 young adults. Behaviorally, girls exhibit higher response caution and more effective evidence accumulation, whereas boys show more impulsive response to negative facial expression stimuli. These effects parallel sex differences in emotion-related brain maturity linking to evidence accumulation, along with age-related decrease in emotional response in the basolateral amygdala and medial prefrontal cortex (MPFC) in girls and an increase in the centromedial amygdala (CMA) in boys. Moreover, girls exhibit age-related decreases in BLA-MPFC coupling linked to evidence accumulation, but boys exhibit increases in CMA-insula coupling associated with response caution. Our findings highlight the neurocomputational accounts for developmental sex differences in emotion and emotion-related behaviors and provide important implications into the neurodevelopmental mechanisms of sex differences in latent emotional decision-making dynamics. This informs the emergence of sex differences in typical and atypical neurodevelopment of children's emotion and related functions.


Assuntos
Tonsila do Cerebelo , Caracteres Sexuais , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Criança , Emoções/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Adulto Jovem
18.
Nutr Metab Cardiovasc Dis ; 33(8): 1608-1616, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357078

RESUMO

BACKGROUND AND AIMS: Although nonalcoholic fatty liver disease (NAFLD) and hypertension are increasingly common among young adults, it is uncertain if NAFLD affects incidence of young-onset hypertension, and if the association is modified by sex. We investigated potential effect modification by sex on the association between NAFLD and incident hypertension in young adults (<40 years). METHOD AND RESULTS: This cohort study comprised 85,789 women and 67,553 men aged <40 years without hypertension at baseline. Hepatic steatosis was assessed by liver ultrasound and classified as mild or moderate/severe. Hypertension was defined as blood pressure (BP) ≥130/80 mmHg; self-reported history of physician-diagnosed hypertension; or current use of BP-lowering medications. Cox proportional hazard models were used to estimate hazard ratios (HRs; 95% confidence intervals [CIs]) for incident hypertension by NAFLD status (median follow-up 4.5 years). A total of 25,891 participants developed incident hypertension (incidence rates per 103 person-years: 15.6 for women and 63.5 for men). Multivariable-adjusted HRs (95% CIs) for incident hypertension comparing no NAFLD (reference) with mild or moderate/severe NAFLD were 1.68 (1.56-1.80) and 1.83 (1.60-2.09) for women and 1.21 (1.17-1.25) and 1.23 (1.17-1.30) for men, respectively. Stronger associations were consistently observed between NAFLD and incident hypertension in women, regardless of obesity/central obesity (all p-values for interaction by sex <0.001). CONCLUSIONS: NAFLD is a potential risk factor for young-onset hypertension with a relatively greater impact in women and in those with more severe hepatic steatosis.


Assuntos
Hipertensão , Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Feminino , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Estudos de Coortes , Fatores de Risco , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Obesidade
19.
Transfus Apher Sci ; 62(3): 103721, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37173208

RESUMO

Donor - recipient sex - mismatched transfusion is associated with increased mortality. The mechanisms for this are not clear, but it may relate to transfusion-related immunomodulation. Recently, CD71+ erythroid cells (CECs), including reticulocytes (CD71+ RBCs) and erythroblasts, have been identified as potent immunoregulatory cells. The proportion of CD71+ RBCs in the peripheral blood is sufficient to play a potential immunomodulatory role. Differences in the quantity of CD71+ RBCs are dependent on blood donor sex. The total number of CD71+ RBCs in red cell concentrates is also affected by blood manufacturing methods, and storage duration. As a component of the total CECs, CD71+ RBCs can affect innate and adaptive immune cells. Phagocytosed CECs directly reduce TNF-α production from macrophages. CECs can also suppress the production of TNF-α production from antigen presenting cells. Moreover, CECs can suppress T cell proliferation thorough immune mediation and / or direct cell-to-cell interactions. Different in their biophysical features compared to mature RBCs, blood donor CD71+ RBCs may be preferential targets for the macrophages. This report summarizes the currently literature supporting an important role for CD71+ RBCs in adverse transfusion reactions including immune mediation and sepsis.


Assuntos
Reação Transfusional , Fator de Necrose Tumoral alfa , Humanos , Eritrócitos , Transfusão de Sangue , Imunomodulação
20.
Can J Physiol Pharmacol ; 101(1): 27-40, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342379

RESUMO

Smoothelin-like 1 (SMTNL1) modulates the contractile performance of smooth muscle and thus has a key role in vascular homeostasis. Elevated vascular tone, recognized as a contributor to the development of progressive cardiac dysfunction, was previously found with SMTNL1 deletion. In this study, we assessed cardiac morphology and function of male and female, wild-type (Smtnl1+/+) and global SMTNL1 knockout (Smtnl1-/-) mice at 10 weeks of age. Gross dissection revealed distinct cardiac morphology only in males; Smtnl1-/- hearts were significantly smaller than Smtnl1+/+, but the left ventricle (LV) proportion of heart mass was greater. Male Smtnl1-/- mice also displayed increased ejection fraction and fractional shortening, as well as elevated aortic and pulmonary flow velocities. The impact of cardiac stress with pressure overload by transverse aortic constriction (TAC) was examined in male mice. With TAC banding, systolic function was preserved, but the LV filling pressure was selectively elevated due to relaxation impairment. Smtnl1-/- mice displayed higher early/passive filling velocity of LV/early mitral annulus velocity ratio (E/E' ratio) and myocardial performance index along with a prolonged isovolumetric relaxation time. Taken together, the findings support a novel, sex-dimorphic role for SMTNL1 in modulating cardiac structure and function of mice.


Assuntos
Proteínas Musculares , Músculo Liso , Fatores Sexuais , Função Ventricular Esquerda , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Volume Sistólico , Proteínas Musculares/genética , Fosfoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA