Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 116(3): 110856, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38734154

RESUMO

Temperature is one of the most important non-genetic sex differentiation factors for fish. The technique of high temperature-induced sex reversal is commonly used in Nile tilapia (Oreochromis niloticus) culture, although the molecular regulatory mechanisms involved in this process remain unclear. The brain is an essential organ for the regulation of neural signals involved in germ cell differentiation and gonad development. To investigate the regulatory roles of miRNAs-mRNAs in the conversion of female to male Nile tilapia gender under high-temperature stress, we compared RNA-Seq data from brain tissues between a control group (28 °C) and a high temperature-treated group (36 °C). The result showed that a total of 123,432,984 miRNA valid reads, 288,202,524 mRNA clean reads, 1128 miRNAs, and 32,918 mRNAs were obtained. Among them, there were 222 significant differentially expressed miRNAs (DE miRNAs) and 810 differentially expressed mRNAs (DE mRNAs) between the two groups. Eight DE miRNAs and eight DE mRNAs were randomly selected, and their expression patterns were validated by qRT-PCR. The miRNA-mRNA co-expression network demonstrated that 40 DE miRNAs targeted 136 protein-coding genes. Functional enrichment analysis demonstrated that these genes were involved in several gonadal differentiation pathways, including the oocyte meiosis signaling pathway, progesterone-mediated oocyte maturation signaling pathway, cell cycle signaling pathway and GnRH signaling pathway. Then, an interaction network was constructed for 8 miRNAs (mir-137-5p, let-7d, mir-1388-5p, mir-124-4-5p, mir-1306, mir-99, mir-130b and mir-21) and 10 mRNAs (smc1al, itpr2, mapk1, ints8, cpeb1b, bub1, fbxo5, mmp14b, cdk1 and hrasb) involved in the oocyte meiosis signaling pathway. These findings provide novel information about the mechanisms underlying miRNA-mediated sex reversal in female Nile tilapia.


Assuntos
Encéfalo , Ciclídeos , MicroRNAs , RNA Mensageiro , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Ciclídeos/crescimento & desenvolvimento , Feminino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Diferenciação Sexual , Masculino , Temperatura Alta , Redes Reguladoras de Genes , Processos de Determinação Sexual
2.
Curr Issues Mol Biol ; 46(6): 6169-6185, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38921039

RESUMO

The protandric shrimp Hippolyte inermis is the only known marine invertebrate whose sex determination is strongly influenced by the composition of its food. In H. inermis, a sex reversal is triggered by the ingestion of diatoms of the genus Cocconeis associated with leaves of the seagrass Posidonia oceanica. These diatoms contain compounds that promote programmed cell death (PCD) in H. inermis and also in human cancer cells. Transcriptomic analyses suggested that ferroptosis is the primary trigger of the shrimp's sex reversal, leading to the rapid destruction of the androgen gland (AG) followed by a chain of apoptotic events transforming the testes into ovaries. Here, we propose a molecular approach to detect the effects of compounds stimulating the PCD. An RNA extraction method, suitable for young shrimp post-larvae (five days after metamorphosis; PL5 stage), was established. In addition, six genes involved in apoptosis, four involved in ferroptosis, and seven involved in the AG switch were mined from the transcriptome, and their expression levels were followed using real-time qPCR in PL5 fed on Cocconeis spp., compared to PL5 fed on a basic control feed. Our molecular approach, which detected early signals of sex reversal, represents a powerful instrument for investigating physiological progression and patterns of PCD in marine invertebrates. It exemplifies the physiological changes that may start a few days after the settlement of post-larvae and determine the life destiny of an individual.

3.
Biochem Biophys Res Commun ; 724: 150227, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38870865

RESUMO

Sex determination mechanisms differ widely among vertebrates, particularly in fish species, where diverse sex chromosomes and sex-determining genes have evolved. However, the sex-differentiation pathways activated by these sex-determining genes appear to be conserved. Gonadal soma-derived growth factor (Gsdf) is one of the genes conserved across teleost fish, especially in medaka fishes of the genus Oryzias, and is implicated in testis differentiation and germ cell proliferation. However, its role in sex differentiation remains unclear. In this study, we investigated Gsdf function in Oryzias hubbsi, a species with a ZW sex-determination system. We confirmed its male-dominant expression, as in other species. However, histological analyses revealed no male-to-female sex reversal in Gsdf-knockout fish, contrary to findings in other medaka species. Genetic sex determination remained intact without Gsdf function, indicating a Gsdf-independent sex-differentiation pathway in O. hubbsi. Instead, Gsdf loss led to germ cell overproliferation in both sexes and accelerated onset of meiosis in testes, suggesting a role in germ cell proliferation. Notably, the feminizing effect of germ cells observed in O. latipes was absent, suggesting diverse germ cell-somatic cell relationships in Oryzias gonad development. Our study highlights species-specific variations in the molecular pathways governing sex determination and differentiation, emphasizing the need for further exploration to elucidate the complexities of sexual development.


Assuntos
Oryzias , Diferenciação Sexual , Animais , Oryzias/genética , Oryzias/crescimento & desenvolvimento , Masculino , Diferenciação Sexual/genética , Feminino , Processos de Determinação Sexual/genética , Testículo/metabolismo , Testículo/citologia , Testículo/crescimento & desenvolvimento , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proliferação de Células , Diferenciação Celular/genética , Células Germinativas/metabolismo , Células Germinativas/citologia , Meiose/genética
4.
Biol Reprod ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180722

RESUMO

Previous studies have suggested that adamts9 (a disintegrin and metalloprotease with thrombospondin type-1 motifs, member 9), an extracellular matrix (ECM) metalloprotease, participates in primordial germ cell (PGC) migration and is necessary for female fertility. In this study, we found that adamts9 knockout (KO) led to reduced body size, and female-to-male sex conversion in late juvenile or adult zebrafish; however, primary sex determination was not affected in early juveniles of adamts9 KO. Overfeeding and lowering the rearing density rescued growth defects in female adamts9 KO fish but did not rescue defects in ovarian development in adamts9 KO. Delayed PGC proliferation, significantly reduced number and size of Stage IB follicles (equivalent to primary follicles) in early juveniles of adamts9 KO, and arrested development at Stage IB follicles in mid- or late-juveniles of adamts9 KO are likely causes of female infertility and sex conversion. Via RNAseq, we found significant enrichment of differentially expressed genes involved in ECM organization during sexual maturation in ovaries of wildtype fish; and significant dysregulation of these genes in adamts9 KO ovaries. RNAseq analysis also showed enrichment of inflammatory transcriptomic signatures in adult ovaries of these adamts9 KO. Taken together, our results indicate that adamts9 is critical for development of primary ovarian follicles and maintenance of female sex, and loss of adamts9 leads to defects in ovarian follicle development, female infertility, and sex conversion in late juveniles and mature adults. These results show that the ECM and extracellular metalloproteases play major roles in maintaining ovarian follicle development in zebrafish.

5.
Biol Reprod ; 110(5): 985-999, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38376238

RESUMO

Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.


Assuntos
Fatores de Transcrição SOX9 , Processos de Determinação Sexual , Testículo , Trombospondinas , Regulação para Cima , Animais , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Masculino , Feminino , Camundongos , Trombospondinas/genética , Trombospondinas/metabolismo , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Testículo/metabolismo , Gônadas/metabolismo , Ovário/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Sexual/genética , Camundongos Endogâmicos C57BL
6.
Cell Mol Life Sci ; 80(9): 253, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589787

RESUMO

Environmental changes alter the sex fate in about 15% of vertebrate orders, mainly in ectotherms such as fish and reptiles. However, the effects of temperature changes on the endocrine and molecular processes controlling gonadal sex determination are not fully understood. Here, we provide evidence that thyroid hormones (THs) act as co-players in heat-induced masculinization through interactions with the stress axis to promote testicular development. We first demonstrated that the thyroid axis (through thyroid-related genes and T3 levels) is highly active in males during the gonadal development in medaka (Oryzias latipes). Similarly, T3 treatments promoted female-to-male sex reversal in XX embryos. Subsequently, embryonic exposure to temperature-induced stress up-regulated the genes related to the thyroid and stress axes with a final increase in T3 levels. In this context, we show that blocking the stress axis response by the loss of function of the corticotropin-releasing hormone receptors suppresses thyroid-stimulating hormone expression, therefore, heat-induced activation of the thyroid axis. Thus, our data showed that early activation of the stress axis and, in consequence, the TH axis, too, leaves us with that both being important endocrine players in inducing female-to-male reversal, which can help predict possible upcoming physiological impacts of global warming on fish populations.


Assuntos
Temperatura Alta , Glândula Tireoide , Feminino , Masculino , Animais , Temperatura , Gônadas , Folhas de Planta
7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33443157

RESUMO

The sex-determining region on the Y chromosome (SRY) is thought to be the central genetic element of male sex development in mammals. Pathogenic modifications within the SRY gene are associated with a male-to-female sex reversal syndrome in humans and other mammalian species, including rabbits and mice. However, the underlying mechanisms are largely unknown. To understand the biological function of the SRY gene, a site-directed mutational analysis is required to investigate associated phenotypic changes at the molecular, cellular, and morphological level. Here, we successfully generated a knockout of the porcine SRY gene by microinjection of two CRISPR-Cas ribonucleoproteins, targeting the centrally located "high mobility group" (HMG), followed by a frameshift mutation of the downstream SRY sequence. This resulted in the development of genetically male (XY) pigs with complete external and internal female genitalia, which, however, were significantly smaller than in 9-mo-old age-matched control females. Quantitative digital PCR analysis revealed a duplication of the SRY locus in Landrace pigs similar to the known palindromic duplication in Duroc breeds. Our study demonstrates the central role of the HMG domain in the SRY gene in male porcine sex determination. This proof-of-principle study could assist in solving the problem of sex preference in agriculture to improve animal welfare. Moreover, it establishes a large animal model that is more comparable to humans with regard to genetics, physiology, and anatomy, which is pivotal for longitudinal studies to unravel mammalian sex determination and relevant for the development of new interventions for human sex development disorders.


Assuntos
Processos de Determinação Sexual/genética , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Sequência de Aminoácidos/genética , Animais , Proteínas de Ligação a DNA/genética , Transtornos do Desenvolvimento Sexual/genética , Mutação da Fase de Leitura/genética , Genes sry/genética , Domínios HMG-Box/genética , Masculino , Mutação/genética , Proteínas Nucleares/genética , Estudo de Prova de Conceito , Domínios Proteicos/genética , Suínos/genética , Fatores de Transcrição/genética , Cromossomo Y/genética
8.
Differentiation ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37783652

RESUMO

Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.

9.
J Fish Biol ; 104(1): 184-205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37779354

RESUMO

The Gorgeous goby Lythrypnus pulchellus shows extreme sexual plasticity with the bidirectional sex-change ability socially controlled in adults. Therefore, this study describes how the hierarchical status affects hormone synthesis through newborn hormone waste products in water and tests the influence of body size and social dominance establishment in sex reversal duration and direction. The associated changes in behavior and hormone levels are described under laboratory conditions in male-male and female-female pairs of similar and different body sizes, recording the changes until spawning. The status establishment occurred in a relatively shorter time period in male and female pairs of different sizes (1-3 days) compared to those of similar size (3-5 days), but the earlier one did not significantly affect the overall time of sex change (verified by pair spawning). The changes in gonads, hormones, and papilla occurred in sex-changer individuals, but the first one was observed in behavior. Courtship started at 3-5 days in male pairs and from 2 h to 1 day in female pairs of both groups of different and similar sizes. Hormones did not gradually move in the new sexual phenotype direction during the sex-change time course. Nonetheless, estradiol regulated sex change and 11-ketotestosterone enabled bidirectional sex change and was modulated by agonistic interactions. Cortisol is associated with status and gonadal sex change. In general, similar mechanisms underlie sex change in both directions with a temporal change sequence in phases. These results shed new light on sex-change mechanisms. Further studies should be performed to determine whether these localized changes exist in the steroid hormone synthesis along the brain-pituitary gonad axis during social and bidirectional sex changes in L. pulchellus.


Assuntos
Perciformes , Humanos , Masculino , Feminino , Animais , Perciformes/fisiologia , Hormônios Esteroides Gonadais , Encéfalo , Comportamento Social , Estradiol
10.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892123

RESUMO

DNA methylation is an important way to regulate gene expression in eukaryotes. In order to reveal the role of DNA methylation in the regulation of germ cell-specific piwi gene expression during spermatogenesis of Japanese flounder (Paralichthys olivaceus), the expression profiles of piwil1 (piwi-like 1) and piwil2 (piwi-like 2) genes in the gonads of female, male, and sex-reversed pseudo-male P. olivaceus were analyzed, and the dynamic of DNA methylation was investigated. As a result, piwil1 and piwil2 genes were highly expressed in the testis of both male and pseudo-male P. olivaceus, with significant variation among male individuals. The DNA methylation levels in the promoter regions of both piwil1 and piwil2 were negatively correlated with their expression levels, which may contribute to the transcriptional regulation of piwi genes during spermatogenesis. There was also sperm quality variation among male P. olivaceus, and the sperm curvilinear velocity was positively correlated with the expression of both piwil1 and piwil2 genes. These results indicated that the DNA methylation in piwil1 and piwil2 promoter regions may affect the initiation of piwi gene transcription, thereby regulating gene expression and further affecting the spermatogenesis process and gamete quality in P. olivaceus.


Assuntos
Proteínas Argonautas , Metilação de DNA , Linguado , Espermatogênese , Espermatozoides , Animais , Masculino , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Linguado/genética , Linguado/metabolismo , Espermatozoides/metabolismo , Espermatogênese/genética , Feminino , Regiões Promotoras Genéticas , Testículo/metabolismo , Regulação da Expressão Gênica , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
11.
Dev Biol ; 492: 101-110, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36220348

RESUMO

The forkhead transcription factor Foxl2 plays a major role in ovarian development and function in mice and fish, and acts as a female sex-determining gene in goat. Its functional role in the sex determination and gonadal differentiation has not yet been investigated in reptiles. Here, we characterized Foxl2 gene in Chinese soft-shelled turtle Pelodiscus sinensis, exhibiting ZZ/ZW sex chromosomes. Foxl2 exhibited a female-specific embryonic expression pattern throughout the critical sex determination periods in P. sinensis. The expression of Foxl2 was induced at early stage in ZZ embryonic gonads that were feminized by estrogen treatment. Most importantly, Foxl2 knockdown in ZW embryos by RNA interference resulted in female-to-male sex reversal, characterized by obvious masculinization of gonads, significant up-regulation of testicular markers Dmrt1 and Sox9, and remarkable down-regulation of ovarian regulator Cyp19a1. Conversely, gain-of-function study showed that overexpression of Foxl2 in ZZ embryos led to largely feminized genetic males, production of Cyp19a1, and a decline in Dmrt1 and Sox9. These findings demonstrate that Foxl2 is both necessary and sufficient to initiate ovarian differentiation in P. sinensis, thereby acting as a key upstream regulator of the female pathway in a reptilian species.


Assuntos
Proteína Forkhead Box L2 , Processos de Determinação Sexual , Tartarugas , Animais , Feminino , Masculino , China , Proteína Forkhead Box L2/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Tartarugas/genética
12.
Proc Biol Sci ; 290(2006): 20231224, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670585

RESUMO

Sexually dimorphic behaviours, such as parental care, have long been thought to be mainly driven by gonadal hormones. In the past two decades, a few studies have challenged this view, highlighting the direct influence of the sex chromosome complement (XX versus XY or ZZ versus ZW). The African pygmy mouse, Mus minutoides, is a wild mouse species with naturally occurring XY sex reversal induced by a third, feminizing X* chromosome, leading to three female genotypes: XX, XX* and X*Y. Here, we show that sex reversal in X*Y females shapes a divergent maternal care strategy (maternal aggression, pup retrieval and nesting behaviours) from both XX and XX* females. Although neuroanatomical investigations were inconclusive, we show that the dopaminergic system in the anteroventral periventricular nucleus of the hypothalamus is worth investigating further as it may support differences in pup retrieval behaviour between females. Combining behaviours and neurobiology in a rodent subject to natural selection, we evaluate potential candidates for the neural basis of maternal behaviours and strengthen the underestimated role of the sex chromosomes in shaping sex differences in brain and behaviours. All things considered, we further highlight the emergence of a third sexual phenotype, challenging the binary view of phenotypic sexes.


Assuntos
Comportamento Materno , Camundongos , Caracteres Sexuais , Sexo , Animais , Feminino , Masculino , Agressão , Encéfalo
13.
Clin Genet ; 103(3): 277-287, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36349847

RESUMO

46,XY gonadal dysgenesis (GD) is a Disorder/Difference of Sex Development (DSD) that can present with phenotypes ranging from ambiguous genitalia to complete male-to-female sex reversal. Around 50% of 46,XY DSD cases receive a molecular diagnosis. In mice, Fibroblast growth factor 9 (FGF9) is an important component of the male sex-determining pathway. Two FGF9 variants reported to date disrupt testis development in mice, but not in humans. Here, we describe a female patient with 46,XY GD harbouring the rare FGF9 variant (missense mutation), NM_002010.2:c.583G > A;p.(Asp195Asn) (D195N). By biochemical and cell-based approaches, the D195N variant disrupts FGF9 protein homodimerisation and FGF9-heparin-binding, and reduces both Sertoli cell proliferation and Wnt4 repression. XY Fgf9D195N/D195N foetal mice show a transient disruption of testicular cord development, while XY Fgf9D195N/- foetal mice show partial male-to-female gonadal sex reversal. In the general population, the D195N variant occurs at an allele frequency of 2.4 × 10-5 , suggesting an oligogenic basis for the patient's DSD. Exome analysis of the patient reveals several known and novel variants in genes expressed in human foetal Sertoli cells at the time of sex determination. Taken together, our results indicate that disruption of FGF9 homodimerization impairs testis determination in mice and, potentially, also in humans in combination with other variants.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Disgenesia Gonadal 46 XY , Humanos , Masculino , Feminino , Camundongos , Animais , Dimerização , Fator 9 de Crescimento de Fibroblastos/genética , Testículo , Gônadas , Disgenesia Gonadal 46 XY/genética
14.
FASEB J ; 36(3): e22176, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35129866

RESUMO

To gain further insight into chromatin-mediated regulation of mammalian sex determination, we analyzed the role of the CHARGE syndrome-associated proteins FAM172A and CHD7. This study is based on our prior discoveries that a subset of corresponding mutant mice display complete male-to-female sex reversal, and that both of these proteins regulate co-transcriptional alternative splicing in neural crest cells. Here, we report that FAM172A and CHD7 are present in the developing gonads when sex determination normally occurs in mice. The interactome of FAM172A in pre-Sertoli cells again suggests a role at the chromatin-spliceosome interface, like in neural crest cells. Accordingly, analysis of Fam172a-mutant pre-Sertoli cells revealed transcriptional and splicing dysregulation of hundreds of genes. Many of these genes are similarly affected in Chd7-mutant pre-Sertoli cells, including several known key regulators of sex determination and subsequent formation of testis cords. Among them, we notably identified Sry as a direct transcriptional target and WNT pathway-associated Lef1 and Tcf7l2 as direct splicing targets. The identified molecular defects are also associated with the abnormal morphology of seminiferous tubules in mutant postnatal testes. Altogether, our results thus identify FAM172A and CHD7 as new players in the regulation of male sex determination and differentiation in mice, and further highlight the importance of chromatin-mediated regulatory mechanisms in these processes.


Assuntos
Processamento Alternativo , Síndrome CHARGE/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas/metabolismo , Processos de Determinação Sexual , Transcriptoma , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/genética , Células de Sertoli/metabolismo , Espermatogênese , Suínos
15.
J Exp Biol ; 226(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861779

RESUMO

Considerations of the impact climate change has on reptiles are typically focused on habitat change or loss, range shifts and skewed sex ratios in species with temperature-dependent sex determination. Here, we show that incubation temperature alters stripe number and head colouration of hatchling American alligators (Alligator mississippiensis). Animals incubated at higher temperatures (33.5°C) had, on average, one more stripe than those at lower temperatures (29.5°C), and also had significantly lighter heads. These patterns were not affected by estradiol-induced sex reversal, suggesting independence from hatchling sex. Therefore, increases in nest temperatures as a result of climate change have the potential to alter pigmentation patterning, which may have implications for offspring fitness.


Assuntos
Jacarés e Crocodilos , Animais , Temperatura , Estradiol , Temperatura Alta , Pigmentação , Razão de Masculinidade
16.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37309620

RESUMO

Vertebrate sex is typically determined genetically, but in many ectotherms sex can be determined by genes (genetic sex determination, GSD), temperature (temperature-dependent sex determination, TSD), or interactions between genes and temperature during development. TSD may involve GSD systems with either male or female heterogamety (XX/XY or ZZ/ZW) where temperature overrides chromosomal sex determination to cause a mismatch between genetic sex and phenotypic sex (sex reversal). In these temperature-sensitive lineages, phylogenetic investigations point to recurrent evolutionary shifts between genotypic and temperature-dependent sex determination. These evolutionary transitions in sex determination can occur rapidly if selection favours the reversed sex over the concordant phenotypic sex. To investigate the consequences of sex reversal on offspring phenotypes, we measured two energy-driven traits (metabolism and growth) and 6 month survival in two species of reptile with different patterns of temperature-induced sex reversal. Male sex reversal occurs in Bassiana duperreyi when chromosomal females (female XX) develop male phenotypes (maleSR XX), while female sex reversal occurs in Pogona vitticeps when chromosomal males (male ZZ) develop female phenotypes (femaleSR ZZ). We show metabolism in maleSR XX was like that of male XY; that is, reflective of phenotypic sex and lower than genotypic sex. In contrast, for Pogona vitticeps, femaleSR ZZ metabolism was intermediate between male ZZ and female ZW metabolic rate. For both species, our data indicate that differences in metabolism become more apparent as individuals become larger. Our findings provide some evidence for an energetic advantage from sex reversal in both species but do not exclude energetic processes as a constraint on the distribution of sex reversal in nature.


Assuntos
Lagartos , Animais , Feminino , Masculino , Lagartos/genética , Processos de Determinação Sexual/genética , Filogenia , Fenótipo , Genótipo , Temperatura
17.
Gen Comp Endocrinol ; 330: 114137, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191636

RESUMO

Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.


Assuntos
Desintegrinas , Peixe-Zebra , Animais , Gônadas , Diferenciação Sexual , Células Germinativas , Metaloproteases
18.
Anim Genet ; 54(2): 93-103, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36504456

RESUMO

Swyer syndrome is where an individual has the karyotype of a typical male yet is phenotypically a female. The lack of a (functional) SRY gene located on the Y-chromosome is implicated in some cases of the Swyer syndrome, although many Swyer individuals with an apparently fully functional SRY gene have also been documented. The present study undertook whole genome sequence analyses of eight cattle with suspected Swyer syndrome and compared their genome to that of both a control male and female. Sequence analyses coupled with female phenotypes confirmed that all eight individuals had the 60,XY sex reversal Swyer syndrome. Seven of the eight Swyer syndrome individuals had a deletion on the Y chromosome encompassing the SRY gene (i.e., SRY-). The eighth individual had no obvious mutation in the SRY gene (SRY+) or indeed in any reported gene associated with sex reversal in mammals; a necropsy was performed on this individual. No testicles were detected during the necropsy. Histological examination of the reproductive tract revealed an immature uterine body and horns with inactive glandular tissue of normal histological appearance; both gonads were elongated, a characteristic of most reported cases of Swyer in mammals. The flanking sequence of 11 single nucleotide polymorphisms within 10 kb of the SRY gene are provided to help diagnose some cases of Swyer syndrome. These single nucleotide polymorphisms will not, however, detect all cases of Swyer syndrome since, as evidenced from the present study (and other studies), some individuals with the Swyer condition still contain the SRY gene (i.e., SRY+).


Assuntos
Doenças dos Bovinos , Disgenesia Gonadal 46 XY , Masculino , Bovinos/genética , Feminino , Animais , Disgenesia Gonadal 46 XY/genética , Mutação , Genes sry , Cromossomo Y/genética , Testículo , Proteína da Região Y Determinante do Sexo/genética , Mamíferos/genética , Doenças dos Bovinos/genética
19.
Anim Biotechnol ; 34(8): 4126-4134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37830156

RESUMO

Sex reversal of male to female is a characteristic of barramundi (Lates calcarifer), which is affected by several factors, thereby changing the broodstock population. A study was conducted in floating cages in Langkawi, Malaysia, to determine the weight point at the onset of the sex reversal phenomena. A total of 75 female and 55 male adult individuals (3-4 weeks of age) were sampled from the fish cultured in cages to ascertain their sex at different weights. The water temperature and salinity values were 29.82 °C and 33.12 ppt, respectively. The specimens were classified into twelve bodyweight classes (2.00-8.00 ± 0.5 kg intervals). Female specimen body weight distribution was highest in the 6.01-6.50 kg class (22.6%), followed by the 5.51-6.00 kg and 4.51-5.00 class (13.3%), while male specimen body weight distribution was highest in the 4.51-5.00 kg class (32.1%), followed by the 4.01-4.50 kg class (30.3%). Length-to-weight relationships for females and males of Asian Seabass indicated positive allometric growth. The correlation between body weight and GSI, using Pearson's correlation, for both sexes, for the male and female barramundi, there was a weak correlation between body weight and GSI, which was 37 and 30%, respectively. Based on the present study's findings, it can be concluded that sex reversal from male to female in Barramundi largely occurred at 4.57 kg body weight and 66.8 cm total length.


Assuntos
Perciformes , Masculino , Feminino , Animais , Peso Corporal
20.
BMC Biol ; 20(1): 5, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996452

RESUMO

BACKGROUND: Fishes are the one of the most diverse groups of animals with respect to their modes of sex determination, providing unique models for uncovering the evolutionary and molecular mechanisms underlying sex determination and reversal. Here, we have investigated how sex is determined in a species of both commercial and ecological importance, the Siamese fighting fish Betta splendens. RESULTS: We conducted association mapping on four commercial and two wild populations of B. splendens. In three of the four commercial populations, the master sex determining (MSD) locus was found to be located in a region of ~ 80 kb on LG2 which harbours five protein coding genes, including dmrt1, a gene involved in male sex determination in different animal taxa. In these fish, dmrt1 shows a male-biased gonadal expression from undifferentiated stages to adult organs and the knockout of this gene resulted in ovarian development in XY genotypes. Genome sequencing of XX and YY genotypes identified a transposon, drbx1, inserted into the fourth intron of the X-linked dmrt1 allele. Methylation assays revealed that epigenetic changes induced by drbx1 spread out to the promoter region of dmrt1. In addition, drbx1 being inserted between two closely linked cis-regulatory elements reduced their enhancer activities. Thus, epigenetic changes, induced by drbx1, contribute to the reduced expression of the X-linked dmrt1 allele, leading to female development. This represents a previously undescribed solution in animals relying on dmrt1 function for sex determination. Differentiation between the X and Y chromosomes is limited to a small region of ~ 200 kb surrounding the MSD gene. Recombination suppression spread slightly out of the SD locus. However, this mechanism was not found in the fourth commercial stock we studied, or in the two wild populations analysed, suggesting that it originated recently during domestication. CONCLUSIONS: Taken together, our data provide novel insights into the role of epigenetic regulation of dmrt1 in sex determination and turnover of SD systems and suggest that fighting fish are a suitable model to study the initial stages of sex chromosome evolution.


Assuntos
Epigênese Genética , Processos de Determinação Sexual , Animais , Feminino , Peixes/genética , Masculino , Processos de Determinação Sexual/genética , Fatores de Transcrição/metabolismo , Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA