Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000934

RESUMO

SAR (synthetic aperture radar) ship detection is a hot topic due to the breadth of its application. However, limited by the volume of the SAR image, the generalization ability of the detector is low, which makes it difficult to adapt to new scenes. Although many data augmentation methods-for example, clipping, pasting, and mixing-are used, the accuracy is improved little. In order to solve this problem, the adversarial training is used for data generation in this paper. Perturbation is added to the SAR image to generate new samples for training, and it can make the detector learn more abundant features and promote the robustness of the detector. By separating batch normalization between clean samples and disturbed images, the performance degradation on clean samples is avoided. By simultaneously perturbing and selecting large losses of classification and location, it can keep the detector adaptable to more confrontational samples. The optimization efficiency and results are improved through K-step average perturbation and one-step gradient descent. The experiments on different detectors show that the proposed method achieves 8%, 10%, and 17% AP (Average Precision) improvement on the SSDD, SAR-Ship-Dataset, and AIR-SARShip, compared to the traditional data augmentation methods.

2.
Sensors (Basel) ; 24(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38339576

RESUMO

Ship detection is vital for maritime safety and vessel monitoring, but challenges like false and missed detections persist, particularly in complex backgrounds, multiple scales, and adverse weather conditions. This paper presents YOLO-Vessel, a ship detection model built upon YOLOv7, which incorporates several innovations to improve its performance. First, we devised a novel backbone network structure called Efficient Layer Aggregation Networks and Omni-Dimensional Dynamic Convolution (ELAN-ODConv). This architecture effectively addresses the complex background interference commonly encountered in maritime ship images, thereby improving the model's feature extraction capabilities. Additionally, we introduce the space-to-depth structure in the head network, which can solve the problem of small ship targets in images that are difficult to detect. Furthermore, we introduced ASFFPredict, a predictive network structure addressing scale variation among ship types, bolstering multiscale ship target detection. Experimental results demonstrate YOLO-Vessel's effectiveness, achieving a 78.3% mean average precision (mAP), surpassing YOLOv7 by 2.3% and Faster R-CNN by 11.6%. It maintains real-time detection at 8.0 ms/frame, meeting real-time ship detection needs. Evaluation in adverse weather conditions confirms YOLO-Vessel's superiority in ship detection, offering a robust solution to maritime challenges and enhancing marine safety and vessel monitoring.

3.
Sensors (Basel) ; 23(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836922

RESUMO

Image-based ship detection is a critical function in maritime security. However, lacking high-quality training datasets makes it challenging to train a robust supervision deep learning model. Conventional methods use data augmentation to increase training samples. This approach is not robust because the data augmentation may not present a complex background or occlusion well. This paper proposes to use an information bottleneck and a reparameterization trick to address the challenge. The information bottleneck learns features that focus only on the object and eliminate all backgrounds. It helps to avoid background variance. In addition, the reparameterization introduces uncertainty during the training phase. It helps to learn more robust detectors. Comprehensive experiments show that the proposed method outperforms conventional methods on Seaship datasets, especially when the number of training samples is small. In addition, this paper discusses how to integrate the information bottleneck and the reparameterization into well-known object detection frameworks efficiently.

4.
Sensors (Basel) ; 23(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37688096

RESUMO

The advancements in ship detection technology using convolutional neural networks (CNNs) regarding synthetic aperture radar (SAR) images have been significant. Yet, there are still some limitations in the existing detection algorithms. First, the backbones cannot generate high-quality multiscale feature maps. Second, there is a lack of suitable attention mechanisms to suppress false alarms. Third, the current feature intensification algorithms are unable to effectively enhance the shallow feature's semantic information, which hinders the detection of small ships. Fourth, top-level feature maps have rich semantic information; however, as a result of the reduction of channels, the semantic information is weakened. These four problems lead to poor performance in SAR ship detection and recognition. To address the mentioned issues, we put forward a new approach that has the following characteristics. First, we use Convnext as the backbone to generate high-quality multiscale feature maps. Second, to suppress false alarms, the multi-pooling channel attention (MPCA) is designed to generate a corresponding weight for each channel, suppressing redundant feature maps, and further optimizing the feature maps generated by Convnext. Third, a feature intensification pyramid network (FIPN) is specifically designed to intensify the feature maps, especially the shallow feature maps. Fourth, a top-level feature intensification (TLFI) is also proposed to compensate for semantic information loss within the top-level feature maps by utilizing semantic information from different spaces. The experimental dataset employed is the SAR Ship Detection Dataset (SSDD), and the experimental findings display that our approach exhibits superiority compared to other advanced approaches. The overall Average Precision (AP) reaches up to 95.6% on the SSDD, which improves the accuracy by at least 1.7% compared to the current excellent methods.

5.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36502044

RESUMO

It is of great significance to accurately detect ships on the ocean. To obtain higher detection performance, many researchers use deep learning to identify ships from images instead of traditional detection methods. Nevertheless, the marine environment is relatively complex, making it quite difficult to determine features of ship targets. In addition, many detection models contain a large amount of parameters, which is not suitable to deploy in devices with limited computing resources. The two problems restrict the application of ship detection. In this paper, firstly, an SAR ship detection dataset is built based on several databases, solving the problem of a small number of ship samples. Then, we integrate the SPP, ASFF, and DIOU-NMS module into original YOLOv3 to improve the ship detection performance. SPP and ASFF help enrich semantic information of ship targets. DIOU-NMS can lower the false alarm. The improved YOLOv3 has 93.37% mAP, 4.11% higher than YOLOv3 on the self-built dataset. Then, we use the MCP method to compress the improved YOLOv3. Under the pruning ratio of 80%, the obtained compressed model has only 6.7 M parameters. Experiments show that MCP outperforms NS and ThiNet. With the size of 26.8 MB, the compact model can run at 15 FPS on an NVIDIA TX2 embedded development board, 4.3 times faster than the baseline model. Our work will contribute to the development and application of ship detection on the sea.


Assuntos
Pesquisadores , Semântica , Humanos , Bases de Dados Factuais
6.
Sensors (Basel) ; 22(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35161971

RESUMO

The sophistication of ship detection technology in remote sensing images is insufficient, the detection results differ substantially from the practical requirements, mainly reflected in the inadequate support for the differentiated application of multi-scene, multi-resolution and multi-type target ships. To overcome these challenges, a ship detection method based on multiscale feature extraction and lightweight CNN is proposed. Firstly, the candidate-region extraction method, based on a multiscale model, can cover the potential targets under different backgrounds accurately. Secondly, the multiple feature fusion method is employed to achieve ship classification, in which, Fourier global spectrum features are applied to discriminate between targets and simple interference, and the targets in complex interference scenarios are further distinguished by using lightweight CNN. Thirdly, the cascade classifier training algorithm and an improved non-maximum suppression method are used to minimise the classification error rate and maximise generalisation, which can achieve final-target confirmation. Experimental results validate our method, showing that it significantly outperforms the available alternatives, reducing the model size by up to 2.17 times while improving detection performance be improved by up to 5.5% in multi-interference scenarios. Furthermore, the robustness ability was verified by three indicators, among which the F-measure score and true-false-positive rate can increase by up to 5.8% and 4.7% respectively, while the mean error rate can decrease by up to 38.2%.


Assuntos
Redes Neurais de Computação , Navios , Algoritmos , Tecnologia , Telemetria
7.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146434

RESUMO

Unlike optical satellites, synthetic aperture radar (SAR) satellites can operate all day and in all weather conditions, so they have a broad range of applications in the field of ocean monitoring. The ship targets' contour information from SAR images is often unclear, and the background is complicated due to the influence of sea clutter and proximity to land, leading to the accuracy problem of ship monitoring. Compared with traditional methods, deep learning has powerful data processing ability and feature extraction ability, but its complex model and calculations lead to a certain degree of difficulty. To solve this problem, we propose a lightweight YOLOV5-MNE, which significantly improves the training speed and reduces the running memory and number of model parameters and maintains a certain accuracy on a lager dataset. By redesigning the MNEBlock module and using CBR standard convolution to reduce computation, we integrated the CA (coordinate attention) mechanism to ensure better detection performance. We achieved 94.7% precision, a 2.2 M model size, and a 0.91 M parameter quantity on the SSDD dataset.

8.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502193

RESUMO

This paper proposes an algorithm that improves ship detection accuracy using preprocessing and post-processing. To achieve this, high-resolution electro-optical satellite images with a wide range of shape and texture information were considered. The developed algorithms display the problem of unreliable detection of ships owing to clouds, large waves, weather influences, and shadows from large terrains. False detections in land areas with image information similar to that of ships are observed frequently. Therefore, this study involves three algorithms: global feature enhancement pre-processing (GFEP), multiclass ship detector (MSD), and false detected ship exclusion by sea land segmentation image (FDSESI). First, GFEP enhances the image contrast of high-resolution electro-optical satellite images. Second, the MSD extracts many primary ship candidates. Third, falsely detected ships in the land region are excluded using the mask image that divides the sea and land. A series of experiments was performed using the proposed method on a database of 1984 images. The database includes five ship classes. Therefore, a method focused on improving the accuracy of various ships is proposed. The results show a mean average precision (mAP) improvement from 50.55% to 63.39% compared with other deep learning-based detection algorithms.


Assuntos
Algoritmos , Tempo (Meteorologia) , Bases de Dados Factuais
9.
Sensors (Basel) ; 22(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36365787

RESUMO

This work proposes a new system capable of real-time ship instance segmentation during maritime surveillance missions by unmanned aerial vehicles using an onboard standard RGB camera. The implementation requires two stages: an instance segmentation network able to produce fast and reliable preliminary segmentation results and a post-processing 3D fully connected Conditional Random Field, which significantly improves segmentation results by exploring temporal correlations between nearby frames in video sequences. Moreover, due to the absence of maritime datasets consisting of properly labeled video sequences, we create a new dataset comprising synthetic video sequences of maritime surveillance scenarios (MarSyn). The main advantages of this approach are the possibility of generating a vast set of images and videos, being able to represent real-world scenarios without the necessity of deploying the real vehicle, and automatic labels, which eliminate human labeling errors. We train the system with the MarSyn dataset and with aerial footage from publicly available annotated maritime datasets to validate the proposed approach. We present some experimental results and compare them to other approaches, and we also illustrate the temporal stability provided by the second stage in missing frames and wrong segmentation scenarios.


Assuntos
Redes Neurais de Computação , Navios , Humanos , Processamento de Imagem Assistida por Computador/métodos
10.
Sensors (Basel) ; 22(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35591135

RESUMO

It is difficult to identify the ship images obtained by a synthetic aperture radar (SAR) due to the influence of dense ships, complex background and small target size, so a deep learning-based target detection algorithm was introduced to obtain better detection performance. However, in order to achieve excellent performance, most of the current target detection algorithms focus on building deep and high-width neural networks, resulting in bloated network structure and reduced detection speed, which is not conducive to the practical application of target detection algorithms. Thereby, an efficient lightweight network Efficient-YOLO for ship detection in complex situations is proposed in the present work. Firstly, a new regression loss function ECIOU is proposed to enhance the detection boxes localization accuracy and model convergence speed. Secondly, We propose the SCUPA module to enhance the multiplexing of picture feature information and the model generalization performance. Thirdly, The GCHE module is proposed to strengthen the network's ability to extract feature information. At last, the effectiveness of our method is tested on the specialized ship dataset: SSDD and HRSID datasets. The results show that Efficient-YOLO outperforms other state-of-the-art algorithms in accuracy, recall and detection speed, with smaller model complexity and model size.


Assuntos
Radar , Navios , Algoritmos , Redes Neurais de Computação , Registros
11.
Sensors (Basel) ; 22(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35591248

RESUMO

In this paper, we present a new high-resolution algorithm for primary signal processing in High Frequency Surface Wave Radar (HFSWR). The algorithm has been developed to achieve and improve primary signal processing performance in existing HFSWR radars in terms of radar target detection. The proposed algorithm is based on a high-resolution estimate of the Range-Doppler (RD-HR) map using given number of frames in the selected integration period. RD-HR maps are formed at every antenna in receive antenna array. Target detection is based on an RD-HR map averaged across all the antennas. Azimuth estimation is performed by a high-resolution MUSIC-type algorithm that is executed for all detections we found in the RD-HR map. The existence of strong Bragg's lines in the RD-HR map complicates the detection process but the contrast of the RD-HR map as well as the detectability of targets on the RD-HR map is significantly better compared to the RD-FFT map used by many existing radars, such as WERA.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Algoritmos , Ondas de Rádio , Ultrassonografia Doppler
12.
Sensors (Basel) ; 21(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502583

RESUMO

In recent years, the rapid development of Deep Learning (DL) has provided a new method for ship detection in Synthetic Aperture Radar (SAR) images. However, there are still four challenges in this task. (1) The ship targets in SAR images are very sparse. A large number of unnecessary anchor boxes may be generated on the feature map when using traditional anchor-based detection models, which could greatly increase the amount of computation and make it difficult to achieve real-time rapid detection. (2) The size of the ship targets in SAR images is relatively small. Most of the detection methods have poor performance on small ships in large scenes. (3) The terrestrial background in SAR images is very complicated. Ship targets are susceptible to interference from complex backgrounds, and there are serious false detections and missed detections. (4) The ship targets in SAR images are characterized by a large aspect ratio, arbitrary direction and dense arrangement. Traditional horizontal box detection can cause non-target areas to interfere with the extraction of ship features, and it is difficult to accurately express the length, width and axial information of ship targets. To solve these problems, we propose an effective lightweight anchor-free detector called R-Centernet+ in the paper. Its features are as follows: the Convolutional Block Attention Module (CBAM) is introduced to the backbone network to improve the focusing ability on small ships; the Foreground Enhance Module (FEM) is used to introduce foreground information to reduce the interference of the complex background; the detection head that can output the ship angle map is designed to realize the rotation detection of ship targets. To verify the validity of the proposed model in this paper, experiments are performed on two public SAR image datasets, i.e., SAR Ship Detection Dataset (SSDD) and AIR-SARShip. The results show that the proposed R-Centernet+ detector can detect both inshore and offshore ships with higher accuracy than traditional models with an average precision of 95.11% on SSDD and 84.89% on AIR-SARShip, and the detection speed is quite fast with 33 frames per second.


Assuntos
Radar , Navios
13.
Sensors (Basel) ; 21(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34960572

RESUMO

With the development of imaging and space-borne satellite technology, a growing number of multipolarized SAR imageries have been implemented for object detection. However, most of the existing public SAR ship datasets are grayscale images under single polarization mode. To make full use of the polarization characteristics of multipolarized SAR, a dual-polarimetric SAR dataset specifically used for ship detection is presented in this paper (DSSDD). For construction, 50 dual-polarimetric Sentinel-1 SAR images were cropped into 1236 image slices with the size of 256 × 256 pixels. The variances and covariance of both VV and VH polarization were fused into R,G,B channels of the pseudo-color image. Each ship was labeled with both a rotatable bounding box (RBox) and a horizontal bounding box (BBox). Apart from 8-bit pseudo-color images, DSSDD also provides 16-bit complex data for readers. Two prevalent object detectors R3Det and Yolo-v4 were implemented on DSSDD to establish the baselines of the detectors with the RBox and BBox respectively. Furthermore, we proposed a weakly supervised ship detection method based on anomaly detection via advanced memory-augmented autoencoder (MemAE), which can significantly remove false alarms generated by the two-parameter CFAR algorithm applied upon our dual-polarimetric dataset. The proposed advanced MemAE method has the advantages of a lower annotation workload, high efficiency, good performance even compared with supervised methods, making it a promising direction for ship detection in dual-polarimetric SAR images. The dataset is available on github.


Assuntos
Algoritmos , Navios , Refração Ocular , Tecnologia
14.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884163

RESUMO

With the wide application of convolutional neural networks (CNNs), a variety of ship detection methods based on CNNs in synthetic aperture radar (SAR) images were proposed, but there are still two main challenges: (1) Ship detection requires high real-time performance, and a certain detection speed should be ensured while improving accuracy; (2) The diversity of ships in SAR images requires more powerful multi-scale detectors. To address these issues, a SAR ship detector called Duplicate Bilateral YOLO (DB-YOLO) is proposed in this paper, which is composed of a Feature Extraction Network (FEN), Duplicate Bilateral Feature Pyramid Network (DB-FPN) and Detection Network (DN). Firstly, a single-stage network is used to meet the need of real-time detection, and the cross stage partial (CSP) block is used to reduce the redundant parameters. Secondly, DB-FPN is designed to enhance the fusion of semantic and spatial information. In view of the ships in SAR image are mainly distributed with small-scale targets, the distribution of parameters and computation values between FEN and DB-FPN in different feature layers is redistributed to solve the multi-scale detection. Finally, the bounding boxes and confidence scores are given through the detection head of YOLO. In order to evaluate the effectiveness and robustness of DB-YOLO, comparative experiments with the other six state-of-the-art methods (Faster R-CNN, Cascade R-CNN, Libra R-CNN, FCOS, CenterNet and YOLOv5s) on two SAR ship datasets, i.e., SSDD and HRSID, are performed. The experimental results show that the AP50 of DB-YOLO reaches 97.8% on SSDD and 94.4% on HRSID, respectively. DB-YOLO meets the requirement of real-time detection (48.1 FPS) and is superior to other methods in the experiments.


Assuntos
Radar , Navios , Redes Neurais de Computação , Registros , Semântica
15.
Sensors (Basel) ; 21(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201799

RESUMO

Ship detection with polarimetric synthetic aperture radar (PolSAR) has gained extensive attention due to its widespread application in maritime surveillance. Nevertheless, designing identifiable features to realize accurate ship detection is still challenging. For this purpose, a fine eight-component model-based decomposition scheme is first presented by incorporating four advanced physical scattering models, thus accurately describing the dominant and local structure scattering of ships. Through analyzing the exclusive scattering mechanisms of ships, a discriminative ship detection feature is then constructed from the derived contributions of eight kinds of scattering components. Combined with a spatial information-based guard filter, the efficacy of the feature is further amplified and thus a ship detector is proposed which fulfills the final ship detection. Several qualitative and quantitative experiments are conducted on real PolSAR data and the results demonstrate that the proposed method reaches the highest figure-of-merit (FoM) factor of 0.96, which outperforms the comparative methods in ship detection.


Assuntos
Radar , Navios , Monitoramento Ambiental , Modelos Teóricos
16.
Sensors (Basel) ; 21(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34833622

RESUMO

Geostationary optical remote sensing satellites, such as the GF-4, have a high temporal resolution and wide coverage, which enables the continuous tracking and observation of ship targets over a large range. However, the ship targets in the images are usually small and dim and the images are easily affected by clouds, islands and other factors, which make it difficult to detect the ship targets. This paper proposes a new method for detecting ships moving on the sea surface using GF-4 satellite images. First, the adaptive nonlinear gray stretch (ANGS) method was used to enhance the image and highlight small and dim ship targets. Second, a multi-scale dual-neighbor difference contrast measure (MDDCM) method was designed to enable detection of the position of the candidate ship target. The shape characteristics of each candidate area were analyzed to remove false ship targets. Finally, the joint probability data association (JPDA) method was used for multi-frame data association and tracking. Our results suggest that the proposed method can effectively detect and track moving ship targets in GF-4 satellite optical remote sensing images, with better detection performance than other classical methods.

17.
Sensors (Basel) ; 21(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924799

RESUMO

In recent years there has been an increased interest in ocean surveillance. The activity includes control and monitoring of illegal fisheries, manmade ocean pollution and illegal sea traffic surveillance, etc. The key problem is how to identify ships and ship-like objects accurately and in a timely manner. In this context, currently, many solutions have been proposed based on high resolution optical and radar remote sensing systems. Most often, these systems suffer from two major limitations viz., limited swath, thereby requiring multiple satellites to cover the region of interest and huge volumes of data being transmitted to ground, even though effective per-pixel information content is minimal. Another limitation is that the existing systems are either simulated on ground or built using the non-space qualified/Commercial Of-The-Shelf (COTS) components. This paper proposes an efficient on-board ship detection system/package connected with medium resolution wide swath optical camera. The methodology adopted has three major components, viz., onboard data processing for improving the radiometric fidelity, followed by a ship detection using modified Constant False Alarm Rate algorithm (CFAR) and a false alarm suppression module to mask false identifications. Finally, the package outputs only the locations of the ships, which is transmitted to the ground. The proposed system reduces the effective volume of data to be transmitted and processed on ground and also significantly cuts down the turnaround time for achieving the end objective. The system is built on radiation hardened Field Programmable Gate Array (FPGA) devices to meet the various engineering constraints such as real-time performance, limited onboard power, radiation hardness, handling of multiple custom interfaces etc. The system is tested with one of the medium resolution Multispectral Visual and Near Infra-Red (MX-VNIR) sensor having a spatial resolution of around 50 m and swath of around 500 Kms, which would be flown with one of the upcoming satellites. The systems performance is also verified on ground with Indian Remote Sensing (IRS) Satellite's Resourcesat's Advanced Wide Field Sensor (AWiFS) data and the results are found to be quite encouraging as well as meeting the mission objectives.

18.
Sensors (Basel) ; 20(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365747

RESUMO

Convolution neural network (CNN)-based detectors have shown great performance on ship detections of synthetic aperture radar (SAR) images. However, the performance of current models has not been satisfactory enough for detecting multiscale ships and small-size ones in front of complex backgrounds. To address the problem, we propose a novel SAR ship detector based on CNN, which consist of three subnetworks: the Fusion Feature Extractor Network (FFEN), Region Proposal Network (RPN), and Refine Detection Network (RDN). Instead of using a single feature map, we fuse feature maps in bottom-up and top-down ways and generate proposals from each fused feature map in FFEN. Furthermore, we further merge features generated by the region-of-interest (RoI) pooling layer in RDN. Based on the feature representation strategy, the CNN framework constructed can significantly enhance the location and semantics information for the multiscale ships, in particular for the small ships. On the other hand, the residual block is introduced to increase the network depth, through which the detection precision could be further improved. The public SAR ship dataset (SSDD) and China Gaofen-3 satellite SAR image are used to validate the proposed method. Our method shows excellent performance for detecting the multiscale and small-size ships with respect to some competitive models and exhibits high potential in practical application.

19.
Sensors (Basel) ; 20(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233434

RESUMO

In high-resolution Synthetic Aperture Radar (SAR) ship detection, the number of SAR samples seriously affects the performance of the algorithms based on deep learning. In this paper, aiming at the application requirements of high-resolution ship detection in small samples, a high-resolution SAR ship detection method combining an improved sample generation network, Multiscale Wasserstein Auxiliary Classifier Generative Adversarial Networks (MW-ACGAN) and the Yolo v3 network is proposed. Firstly, the multi-scale Wasserstein distance and gradient penalty loss are used to improve the original Auxiliary Classifier Generative Adversarial Networks (ACGAN), so that the improved network can stably generate high-resolution SAR ship images. Secondly, the multi-scale loss term is added to the network, so the multi-scale image output layers are added, and multi-scale SAR ship images can be generated. Then, the original ship data set and the generated data are combined into a composite data set to train the Yolo v3 target detection network, so as to solve the problem of low detection accuracy under small sample data set. The experimental results of Gaofen-3 (GF-3) 3 m SAR data show that the MW-ACGAN network can generate multi-scale and multi-class ship slices, and the confidence level of ResNet18 is higher than that of ACGAN network, with an average score of 0.91. The detection results of Yolo v3 network model show that the detection accuracy trained by the composite data set is as high as 94%, which is far better than that trained only by the original SAR data set. These results show that our method can make the best use of the original data set, improve the accuracy of ship detection.

20.
Sensors (Basel) ; 20(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365652

RESUMO

Efficient ship detection is essential to the strategies of commerce and military. However, traditional ship detection methods have low detection efficiency and poor reliability due to uncertain conditions of the sea surface, such as the atmosphere, illumination, clouds and islands. Hence, in this study, a novel ship target automatic detection system based on a modified hypercomplex Flourier transform (MHFT) saliency model is proposed for spatial resolution of remote-sensing images. The method first utilizes visual saliency theory to effectively suppress sea surface interference. Then we use OTSU methods to extract regions of interest. After obtaining the candidate ship target regions, we get the candidate target using a method of ship target recognition based on ResNet framework. This method has better accuracy and better performance for the recognition of ship targets than other methods. The experimental results show that the proposed method not only accurately and effectively recognizes ship targets, but also is suitable for spatial resolution of remote-sensing images with complex backgrounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA