Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2309600, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38403846

RESUMO

Constructing a stable and robust solid electrolyte interphase (SEI) has a decisive influence on the charge/discharge kinetics of lithium-ion batteries (LIBs), especially for silicon-based anodes which generate repeated destruction and regeneration of unstable SEI films. Herein, a facile way is proposed to fabricate an artificial SEI layer composed of lithiophilic chitosan on the surface of two-dimensional siloxene, which has aroused wide attention as an advanced anode for LIBs due to its special characteristics. The optimized chitosan-modified siloxene anode exhibits an excellent reversible cyclic stability of about 672.6 mAh g-1 at a current density of 1000 mA g-1 after 200 cycles and 139.9 mAh g-1 at 6000 mA g-1 for 1200 cycles. Further investigation shows that a stable and LiF-rich SEI film is formed and can effectively adhere to the surface during cycling, redistribute lithium-ion flux, and enable a relatively homogenous lithium-ion diffusion. This work provides constructive guidance for interface engineering strategy of nano-structured silicon anodes.

2.
Molecules ; 29(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125068

RESUMO

The addition of two-dimensional inorganic nanomaterials can effectively enhance the properties of polyethylene (PE). In the present study, a series of high-performance PE/oleic acid (OA)-siloxene nanocomposites were prepared by in situ polymerization using OA-siloxene-supported Ziegler-Natta catalysts. Compared with the conventional Ziegler-Natta catalyst, the polymerization activity of the OA-siloxene-supported Ziegler-Natta catalyst was enhanced to 100 kg/mol-Ti•h, an increase of 56%. The OA-siloxene fillers exhibited excellent dispersion within the PE matrix through the in situ polymerization technique. Compared to pure PE, PE/OA-siloxene nanocomposites containing 1.13 wt% content of OA-siloxene showed 68.3 °C, 126%, 37%, and 46% enhancements in Tdmax, breaking strength, modulus, and elongation at break, respectively.

3.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903388

RESUMO

With the development of laser technology, the research of novel laser protection materials is of great significance. In this work, dispersible siloxene nanosheets (SiNSs) with a thickness of about 1.5 nm are prepared by the top-down topological reaction method. Based on the Z-scan and optical limiting testing under the visible-near IR ranges nanosecond laser, the broad-band nonlinear optical properties of the SiNSs and their hybrid gel glasses are investigated. The results show that the SiNSs have outstanding nonlinear optical properties. Meanwhile, the SiNSs hybrid gel glasses also exhibit high transmittance and excellent optical limiting capabilities. It demonstrates that SiNSs are promising materials for broad-band nonlinear optical limiting and even have potential applications in optoelectronics.

4.
Small ; 18(25): e2201247, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35595710

RESUMO

Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH-1 over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C-1 (correlation coefficient of 0.139% °C-1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases.


Assuntos
Grafite , Nanotubos de Carbono , Cobre/química , Grafite/química , Humanos , Íons , Lasers , Nanotubos de Carbono/química
5.
Angew Chem Int Ed Engl ; 60(20): 11257-11261, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33655589

RESUMO

Developing new optimized bifunctional photocatalyst is of great significant for achieving the high-performance photo-assisted Li-O2 batteries. Herein, a novel bifunctional photo-assisted Li-O2 system is constructed by using siloxene nanosheets with ultra-large size and few-layers due to its superior light harvesting, semiconductor characteristic, and low recombination rate. An ultra-low charge potential of 1.90 V and ultra-high discharge of 3.51 V have been obtained due to the introduction of this bifunctional photocatalyst into Li-O2 batteries, and these results have realized the round-trip efficiency up to 185 %. In addition, this photo-assisted Li-O2 batteries exhibits a high rate (129 % round-trip efficiency at 1 mA cm-2 ), a prolonged cycling life with 92 % efficiency retention after 100 cycles, and the highly reversible capacity of 1170 mAh g-1 at 0.75 mA cm-2 . This work will open the vigorous opportunity for high-efficiency utilization of solar energy into electric system.

6.
Sensors (Basel) ; 20(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872309

RESUMO

In this work, we demonstrate the incorporation of two-dimensional (2D) layered materials into a metal-organic framework (MOF) derived from one-dimensional (1D) cerium oxide (CeO2) for the electrochemical detection of dopamine. Ce-MOF was employed as a sacrificial template for preparing CeO2 with 2D materials by the pyrolysis process. The influence of the pyrolysis temperature was studied to achieve a better crystal structure of CeO2. Siloxene improved the dopamine sensing performance of CeO2 compared with graphitic carbon nitride (g-C3N4) due to the basal plane surface oxygen and hydroxyl groups of 2D siloxene. Under optimal conditions, the fabricated CeO2/siloxene electrode exhibited a detection limit of 0.292 µM, with a linear range from 0.292 µM to 7.8 µM. This work provides a novel scheme for designing the CeO2 material with siloxene for excellent dopamine sensors, which could be extended towards other biosensing applications.

7.
Nanomicro Lett ; 16(1): 219, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884690

RESUMO

Doped two-dimensional (2D) materials hold significant promise for advancing many technologies, such as microelectronics, optoelectronics, and energy storage. Herein, n-type 2D oxidized Si nanosheets, namely n-type siloxene (n-SX), are employed as Li-ion battery anodes. Via thermal evaporation of sodium hypophosphite at 275 °C, P atoms are effectively incorporated into siloxene (SX) without compromising its 2D layered morphology and unique Kautsky-type crystal structure. Further, selective nucleophilic substitution occurs, with only Si atoms being replaced by P atoms in the O3≡Si-H tetrahedra. The resulting n-SX possesses two delocalized electrons arising from the presence of two electron donor types: (i) P atoms residing in Si sites and (ii) H vacancies. The doping concentrations are varied by controlling the amount of precursors or their mean free paths. Even at 2000 mA g-1, the n-SX electrode with the optimized doping concentration (6.7 × 1019 atoms cm-3) delivers a capacity of 594 mAh g-1 with a 73% capacity retention after 500 cycles. These improvements originate from the enhanced kinetics of charge transport processes, including electronic conduction, charge transfer, and solid-state diffusion. The approach proposed herein offers an unprecedented route for engineering SX anodes to boost Li-ion storage.

8.
ACS Appl Mater Interfaces ; 16(8): 9725-9735, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378454

RESUMO

Potentiometric detection in complex biological fluids enables continuous electrolyte monitoring for personal healthcare; however, the commercialization of ion-selective electrode-based devices has been limited by the rapid loss of potential stability caused by electrode surface inactivation and biofouling. Here, we describe a simple multifunctional hybrid patch incorporating an Au nanoparticle/siloxene-based solid contact (SC) supported by a substrate made of laser-inscribed graphene on poly(dimethylsiloxane) for the noninvasive detection of sweat Na+ and K+. These SC nanocomposites prevent the formation of a water layer during ion-to-electron transfer, preserving 3 and 5 µV/h potential drift for the Na+ and K+ ion-selective electrodes, respectively, after 13 h of exposure. The lamellar structure of the siloxene sheets increases the SC area. In addition, the electroplated Au nanoparticles, which have a large surface area and excellent conductivity, further increased the electric double-layer capacitance at the interface between the ion-selective membranes and solid-state contacts, thus facilitating ion-to-electron transduction and ultimately improving the detection stability of Na+ and K+. Furthermore, the integrated temperature and electrocardiogram sensors in the flexible patch assist in monitoring body temperature and electrocardiogram signals, respectively. Featuring both electrochemical ion-selective and physical sensors, this patch offers immense potential for the self-monitoring of health.


Assuntos
Grafite , Nanopartículas Metálicas , Grafite/química , Ouro/química , Suor/química , Nanopartículas Metálicas/química , Eletrocardiografia
9.
ACS Appl Mater Interfaces ; 15(27): 32707-32716, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377389

RESUMO

Two-dimensional (2D) siloxene is attracting considerable research interest recently principally owing to its inherent compatibility with silicon-based semiconductor technology. -The synthesis of siloxene has been mostly limited to multilayered structures using traditional topochemical reaction procedures. Herein, we report high-yield synthesis of single to few-layer siloxene nanosheets by developing a two-step interlayer expansion and subsequent liquid phase exfoliation procedure. Our protocol enables high-yield production of few-layer siloxene nanosheets with a lateral dimension of up to 4 µm and thickness ranging from 0.8 to 4.8 nm, corresponding to single to a few layers, well stabilized in water. The atomically flat nature of exfoliated siloxene can be exploited for the construction of 2D/2D heterostructure membranes via typical solution processing. We demonstrate highly ordered graphene/siloxene heterostructure films with synergistic mechanical and electrical properties, which deliver noticeably high device capacitance when assembled into a coin cell symmetric supercapacitor device structures. Additionally, we demonstrate that the mechanically flexible exfoliated siloxene-graphene heterostructure enables its direct use in flexible and wearable supercapacitor applications.

10.
ACS Appl Mater Interfaces ; 15(20): 24306-24318, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163664

RESUMO

Two-dimensional (2D) siloxene (Si6O3H6) has shown promise as a negative electrode material for Li-ion batteries due to its high gravimetric capacity and superior mechanical properties under (de)lithiation compared to bulk Si. In this work, we prepare purified siloxene nanosheets through the removal of bulk Si contaminants, use ultrasonication to control the lateral size and thickness of the nanosheets, and probe the effects of the resulting morphology and purity on the electrochemistry. The thin siloxene nanosheets formed after 4 h of ultrasonication deliver an average capacity of 810 mA h/g under a 1000 mA/g rate over 200 cycles with a capacity retention of 76%. Interestingly, the purified siloxene shows lower initial capacity but superior capacity retention over extended cycling. The 2D morphology benefit is illustrated where the parent siloxene nanosheet morphology and structure were largely maintained based on operando optoelectrochemistry, in situ Raman, ex situ scanning electron microscopy, and ex situ transmission electron microscopy. Furthermore, the purified siloxene-based electrode free from crystalline Si impurity experiences the least expansion upon (de)lithiation as visualized by cross-section electron microscopy of samples recovered post-cycling.

11.
ACS Nano ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622112

RESUMO

Directly integrating the bifunctional photoelectrode into Li-O2 batteries has been considered an effective way to reduce the overpotential and promote electric energy saving. However, more regular investigations on various bifunctional photocatalysts have still been desired for high-performance photoassisted Li-O2 batteries. Herein, a systematic exploration of various-sized siloxene photocatalysts affected by Li-O2 batteries has been introduced. Compared with the utilization of larger-sized siloxene nanosheets (SNSs), the photoassisted Li-O2 battery with a siloxene quantum dot (SQD) photoelectrode delivers a superior round-trip efficiency of 230% based on the highest discharge potential up to 3.72 V and lowest charge potential of 1.60 V and enables the maintenance of a long-term cycling life with only 13% efficiency attenuation after 200 cycles at 0.075 mA/cm2. Furthermore, this system exhibits a record-high rate-cycling performance (162% round-trip efficiency, even at 3 mA/cm2) and a high discharge capacity of 2212 mAh/g at 1 mA/cm2. These ground-breaking performances could be attributed to the synergistic effect of the photocatalytic and electrocatalytic activities of SQD photocatalysts with the ideal conduction band/valence band values, the abundant defective sites, and the stronger O2 and lower LiO2 adsorption strengths of SQD photocatalysts. These systematic research studies highlight the significance of SQD bifunctional photocatalysts and could be extended to other photocatalysts for further high-efficiency photoelectric conversion and storage.

12.
ACS Appl Mater Interfaces ; 14(48): 53658-53666, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36400752

RESUMO

Silicon oxides (SiOx) are one of the most promising anode materials for next-generation lithium-ion batteries owing to their abundant reserve and low lost and high reversible capacity. However, the practical application of SiOx is still hindered by their intrinsically low conductivity and huge volume change. In this regard, we design a novel anode material in which sheet-like SiOx nanosheets are encapsulated in a unique point-to-plane conductive network composed of graphene flakes and nitrogen-doped carbon spheres. This unique composite structure demonstrates high specific capacity (867.7 mAh g-1 at 0.1 A g-1), superior rate performance, and stable cycle life. The electrode delivers a superior reversible discharge capacity of 595.8 mAh g-1 after 200 cycles at 1.0 A g-1 and 287.5 mAh g-1 after 500 cycles at 5.0 A g-1. This work may shed light on the rational design of SiOx-based anode materials for next-generation high-performance lithium-ion batteries.

13.
Small Methods ; 6(6): e2200306, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35478385

RESUMO

Siloxene as a new type of 2D material has wide potential applications due to its special structure. Especially, as anode for lithium-ion batteries, siloxene shows promising prospect due to its small volume change and low diffusion pathway. However, the unstable solid electrolyte interphase and low electronic conductivity lead to the low Coulombic efficiency, poor rate capability, and limited cycling performance. To settle the problems, a thin porous covalent organic framework (COF) coating layer is designed by in situ growth on micro-sized siloxene. With the inherent ionic conductive and electrolyte compatible advantages of COF, the engineered siloxene demonstrates superior electrochemical performance with 96% capacity retention at 8 A g-1 for 1500 cycles.

14.
J Colloid Interface Sci ; 579: 205-211, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592987

RESUMO

Novel two-dimensional silicon-based material siloxene has been synthesized handily by a one-step method, which utilizes the characteristics of the topological exfoliation to simplify the process of synthesis and modification. It is worth mentioning that for the first time amino-modified derivative has been investigated. Amino modification can promote the oxidation of siloxene, enlarge the bandgap and extend the carrier lifetime of siloxene. The application of siloxene before and after modification in water-splitting has been investigated. In addition, the superiority of the resultant two-dimensional materials was concisely elaborated, which revealed that owing to more effective photogenerated carriers' separation in amino modification siloxene, hydrogen production could be greatly promoted.

15.
J Colloid Interface Sci ; 562: 453-460, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31874714

RESUMO

Semiconducting 2D siloxene nanosheets of thickness 1.7 nm and band gap of 2.54 eV are synthesized using simple chemical route. Strong photoluminescence is observed in the as-synthesized nanosheets due to presence of oxygen atoms. The photoluminescence behaviour of siloxene nanosheets is investigated by controlling temperature, excitation and pH of the solution to understand the optical response and stability of the material. The as-synthesized sample heated with temperature 200 °C shows a blue shift of 90 nm compared to the sample synthesized at room temperature. The low temperature luminescence measurements of as-synthesized samples dried at different temperatures viz. 27, 100 and 200 °C. It is seen that the luminescence intensity is increasing with decreasing temperature for the sample dried at room temperature. However, after heating the sample at 100 °C, the luminescence intensity is not only increased but also red-shifted up to 52 nm. The photocurrent has been measured for the device structure of ITO/PEDOT: PSS/Siloxene/Al with different film thicknesses to optimize the photocurrent and the maximum percentage change in photo power gain. The maximum photopower gain of 2693% is observed for the film thickness of 600 nm.

16.
ACS Appl Mater Interfaces ; 11(1): 624-633, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30474949

RESUMO

Two-dimensional siloxene sheets are an emerging class of materials with an eclectic range of potential applications including electrochemical energy conversion and storage sectors. Here, we demonstrated the dehydrogenation/dehydroxylation of siloxene sheets by thermal annealing at high temperature (HT) and investigated their supercapacitive performances using ionic liquid electrolyte. The X-ray diffraction analysis, spectroscopic (Fourier transform infrared, laser Raman, and X-ray photoelectron spectroscopy) studies, and morphological analysis of HT-siloxene revealed the removal of functional groups at the edges/basal planes of siloxene, and preservation of oxygen-interconnected Si6 rings with sheet-like structures. The HT-siloxene symmetric supercapacitor (SSC) operates over a wide potential window (0-3.0 V), delivers a high specific capacitance (3.45 mF cm-2), high energy density of about 15.53 mJ cm-2 (almost 2-fold higher than that of the as-prepared siloxene SSC), and low equivalent series resistance (compared to reported silicon-based SSCs) with excellent rate capability and long cycle life over 10 000 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA