RESUMO
An artificial multisensory device applicable to in-sensor computing is demonstrated with a single-transistor neuron (1T-neuron) for multimodal perception. It simultaneously receives two sensing signals from visual and thermal stimuli. The 1T-neuron transforms these signals into electrical signals in the form of spiking and then fires them for a spiking neural network at the same time. This feature makes it feasible to realize input neurons for multimodal sensing. Visual and thermal sensing is achieved due to the inherent optical and thermal behaviors of the 1T-neuron. To demonstrate a neuromorphic multimodal sensing system with the artificial multisensory 1T-neuron, fingerprint recognition, widely used for biometric security, is implemented. Owing to the simultaneous sensing of heat as well as light, the proposed fingerprint recognition system composed of multisensory 1T-neurons not only identifies a genuine pattern but also judges whether or not it is forged.
RESUMO
Neuromorphic hardware with a spiking neural network (SNN) can significantly enhance the energy efficiency for artificial intelligence (AI) functions owing to its event-driven and spatiotemporally sparse operations. However, an artificial neuron and synapse based on complex complementary metal-oxide-semiconductor (CMOS) circuits limit the scalability and energy efficiency of neuromorphic hardware. In this work, a neuromorphic module is demonstrated composed of synapses over neurons realized by monolithic vertical integration. The synapse at top is a single thin-film transistor (1TFT-synapse) made of poly-crystalline silicon film and the neuron at bottom is another single transistor (1T-neuron) made of single-crystalline silicon. Excimer laser annealing (ELA) is applied to activate dopants for the 1TFT-synapse at the top and rapid thermal annealing (RTA) is applied to do so for the 1T-neuron at the bottom. Internal electro-thermal annealing (ETA) via the generation of Joule heat is also used to enhance the endurance of the 1TFT-synapse without transferring heat to the 1T-neuron at the bottom. As neuromorphic vision sensing, classification of American Sign Language (ASL) is conducted with the fabricated neuromorphic module. Its classification accuracy on ASL is ≈92.3% even after 204 800 update pulses.