Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Prosthet Orthot ; 33(4): 255-265, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35529101

RESUMO

Introduction: Mechanically induced skin breakdown is a significant problem for many lower-limb prosthesis users. It is known that skin can adapt to the mechanical stresses of prosthesis use thereby reducing the risk of breakdown, yet little is understood about the biology behind skin adaptation. This is a proof-of-concept study for the use of novel, noninvasive optical coherence tomography (OCT) imaging techniques to investigate skin adaptation. Methods: Two OCT imaging-based tests were used to evaluate features of the skin that may be involved in adaptation to limb-socket interface stresses. The tests were used to assess the function and structure of the cutaneous microvasculature, respectively. Epidermal thickness was also quantified. Tests were run on three lower-limb prosthesis users in a region of the residual limb believed to be highly stressed within the prosthetic socket. The measurements were compared with measurements taken at a location-matched site on the contralateral limb. Results: Two of three participants demonstrated a faster time-to-peak and larger peakmagnitude reactive hyperemia response in their residual limb compared with their contralateral limb. Two of three participants also demonstrated a larger magnitude vessel density at maximum dilation in their residual limb versus contralateral limb. The epidermal thickness was greater in the residual limb versus contralateral limb for all participants. Conclusions: This study demonstrated the utility of two novel OCT imaging techniques for investigating skin adaptation in users of lower-limb prostheses. If we are able to confirm these findings on a larger subject population, we will better understand the biology behind mechanically induced skin adaptation. These findings, along with the noninvasive OCT imaging methods introduced here, would have the potential to improve clinical practice by enabling the development of rehabilitation techniques and therapeutics to better strengthen skin, thereby reducing the incidence of harmful skin breakdown.

2.
Skin Res Technol ; 26(5): 627-638, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32227371

RESUMO

BACKGROUND: Skin breakdown due to limb-socket interface stress is a significant problem for lower limb prosthesis users. While it is known that skin can adapt to stress to become more resistant to breakdown, little is understood about skin adaptation and few methods exist to noninvasively investigate it. In this study, we present novel, noninvasive imaging methods using Optical Coherence Tomography (OCT) to assess key features of the cutaneous microvasculature that may be involved in skin adaptation. MATERIALS AND METHODS: Eight able-bodied participants wore a modified below-knee prosthetic socket for two weeks to stress the skin of their lower limb. Two OCT-based imaging tests were used to assess the function and structure, respectively, of the cutaneous microvasculature at multiple time points throughout the socket wear protocol. RESULTS: A measurable reactive hyperemia response was reliably induced in the skin of study participants in the vascular function assessment test. The vascular structure assessment demonstrated excellent field-of-view repeatability, providing rich data sets of vessel structure. No statistically significant differences were found in any of the measurements when compared between time points of the adaptation protocol. The participants' limbs were likely not stressed enough by the able-bodied socket to induce measurable skin adaptation. CONCLUSION: This study introduced new techniques to investigate skin adaptation to mechanical stress. If the key limitations are addressed, these methods have the potential to provide insight into the function and structure of the cutaneous microvasculature that previously could not be attained noninvasively.


Assuntos
Fenômenos Fisiológicos da Pele , Pele , Estresse Mecânico , Tomografia de Coerência Óptica , Adulto , Membros Artificiais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desenho de Prótese , Pele/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA