RESUMO
Diazotrophs play a key role in biological nitrogen (N2) fixation. However, we know little about the distribution of the diazotrophic community along the soil profile in paddy fields. Here, we used Illumina MiSeq sequencing, targeting the nitrogenase reductase (nifH) gene, to investigate changes with depth (0-100 cm) in the diazotrophic community in paddy soils of three regions (Changshu, Hailun, and Yingtan) in China. The results indicated that most diazotrophs belonged to the phylum Proteobacteria, accounting for 78.05% of the total number of sequences. The diazotrophic diversity was generally highest in the 10-20 cm layer, and then significantly decreased with soil depth. Principal coordinate analysis and PERMANOVA indicated that the diazotrophic community structure was significantly affected by region and soil depth. There were obvious differences in the composition of the diazotrophic community between the topsoil (0-40 cm) and the subsoil (40-100 cm). Anaeromyxobacter, Sideroxydans, Methylomonas, Nostoc, Methanocella, and Methanosaeta were enriched in the topsoil, while Geobacter, Azoarcus, Bradyrhizobium, and Dechloromonas were concentrated in the subsoil. Furthermore, co-occurrence network analysis showed that the diazotrophic network in the topsoil was more complex than that in the subsoil. Distance-based redundancy analysis indicated that soil total C and N content and pH were the main factors influencing the vertical variation in the diazotrophic community. These results highlighted that depth has a great impact on the diazotrophic diversity, community composition, and co-occurrence patterns in paddy soil.
Assuntos
Bradyrhizobium , Solo , Nitrogênio/análise , Fixação de Nitrogênio , Microbiologia do SoloRESUMO
Soil diazotrophs play important roles in ecosystem functioning by converting atmospheric N2 into biologically available ammonium. However, the diversity and distribution of soil diazotrophic communities in different forests and whether they follow biogeographic patterns similar to macroorganisms still remain unclear. By sequencing nifH gene amplicons, we surveyed the diversity, structure and biogeographic patterns of soil diazotrophic communities across six North American forests (126 nested samples). Our results showed that each forest harboured markedly different soil diazotrophic communities and that these communities followed traditional biogeographic patterns similar to plant and animal communities, including the taxa-area relationship (TAR) and latitudinal diversity gradient. Significantly higher community diversity and lower microbial spatial turnover rates (i.e. z-values) were found for rainforests (~0.06) than temperate forests (~0.1). The gradient pattern of TARs and community diversity was strongly correlated (r(2) > 0.5) with latitude, annual mean temperature, plant species richness and precipitation, and weakly correlated (r(2) < 0.25) with pH and soil moisture. This study suggests that even microbial subcommunities (e.g. soil diazotrophs) follow general biogeographic patterns (e.g. TAR, latitudinal diversity gradient), and indicates that the metabolic theory of ecology and habitat heterogeneity may be the major underlying ecological mechanisms shaping the biogeographic patterns of soil diazotrophic communities.
Assuntos
Biodiversidade , Florestas , Microbiologia do Solo , Bactérias/classificação , Carbono/análise , Genes Bacterianos , Nitrogênio/análise , América do Norte , Floresta Úmida , Solo/químicaRESUMO
Diazotrophs are the major organismal group responsible for atmospheric nitrogen (N2) fixation in natural ecosystems. The extensive diversity and structure of N2-fixing communities in grassland ecosystems and their responses to increasing atmospheric CO2 remain to be further explored. Through pyrosequencing of nifH gene amplicons and extraction of nifH genes from shotgun metagenomes, coupled with co-occurrence ecological network analysis approaches, we comprehensively analyzed the diazotrophic community in a grassland ecosystem exposed to elevated CO2 (eCO2) for 12 years. Long-term eCO2 increased the abundance of nifH genes but did not change the overall nifH diversity and diazotrophic community structure. Taxonomic and phylogenetic analysis of amplified nifH sequences suggested a high diversity of nifH genes in the soil ecosystem, the majority belonging to nifH clusters I and II. Co-occurrence ecological network analysis identified different co-occurrence patterns for different groups of diazotrophs, such as Azospirillum/Actinobacteria, Mesorhizobium/Conexibacter, and Bradyrhizobium/Acidobacteria. This indicated a potential attraction of non-N2-fixers by diazotrophs in the soil ecosystem. Interestingly, more complex co-occurrence patterns were found for free-living diazotrophs than commonly known symbiotic diazotrophs, which is consistent with the physical isolation nature of symbiotic diazotrophs from the environment by root nodules. The study provides novel insights into our understanding of the microbial ecology of soil diazotrophs in natural ecosystems.
Assuntos
Bactérias/metabolismo , Biodiversidade , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Pradaria , Fixação de Nitrogênio , FilogeniaRESUMO
The species-specific responses of plant growth to elevated atmospheric CO2 concentration (eCO2) could lead to N limitation and potentially influence the sustainability of ecosystem. Questions remain unanswered with regards to the response of soil N2-fixing community to eCO2 when developing high-yielding agroecosystem to dampen the future rate of increase in CO2 levels and associated climate warming. This study demonstrates the divergent eCO2 influences on the paddy diazotrophic community between weak- and strong-responsive rice cultivars. In response to eCO2, the diazotrophic abundance increased more for the strong-responsive cultivar treatments than for the weak-responsive ones. Only the strong-responsive cultivars decreased the alpha diversity and separated the composition of diazotrophic communities in response to eCO2. The topological indices of the ecological networks further highlighted the different co-occurrence patterns of the diazotrophic microbiome in rice cultivars under eCO2. Strong-responsive cultivars destabilized the diazotrophic community by complicating and centralizing the co-occurrence network as well as by shifting the hub species from Bradyrhizobium to Dechloromonas in response to eCO2. On the contrary, the network pattern of the weak-responsive cultivars was simplified and decentralized in response to eCO2, with the hub species shifting from Halorhodospira under aCO2 to Sideroxydans under eCO2. Collectively, the above information indicates that the strong-responsive cultivars could potentially undermine the belowground ecosystem from the diazotrophs perspective in response to eCO2. This information highlights that more attention should be paid to the stability of the belowground ecosystem when developing agricultural strategies to adapt prospective climatic scenarios by growing high-yielding crop cultivars under eCO2.