Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(10): 4241-4252, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36867117

RESUMO

Photovoltaic (PV) power generation is one of the world's most promising options for carbon emission reduction. However, whether the operation period of solar parks can increase greenhouse gas (GHG) emissions in hosting natural ecosystems has not been fully considered. Here, we conducted a field experiment to compensate for the lack of evaluation of the effects of PV array deployment on GHG emissions. Our results show that the PV arrays caused significant differences in air microclimate, soil properties, and vegetation characteristics. Simultaneously, PV arrays had more significant effects on CO2 and N2O emissions but a minor impact on CH4 uptake in the growing season. Of all the environmental variables included, soil temperature and moisture were the main drivers of GHG flux variation. The sustained flux global warming potential from the PV arrays significantly increased by 8.14% compared to the ambient grassland. Our evaluation models identified that the GHG footprint of PV arrays during the operation period on grasslands was 20.62 g CO2-eq kW h-1. Compared with our model estimates, GHG footprint estimates reported in previous studies were generally less by 25.46-50.76%. The contribution of PV power generation to GHG reduction may be overestimated without considering the impact of PV arrays on hosting ecosystems.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Ecossistema , Dióxido de Carbono/análise , Metano/análise , Solo , Óxido Nitroso/análise
2.
Glob Chang Biol ; 20(6): 1699-706, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24132939

RESUMO

Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant-soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant-soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research.


Assuntos
Ciclo do Carbono , Microclima , Energia Solar , Vento , Plantas/química , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA