Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Genet ; 39(5): 344-346, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949004

RESUMO

Many organisms remove DNA from their genomes during development. This has foremost been characterized as a means of defending genomes against mobile elements. However, genome editing actually hides such elements from purifying selection, with the survivors evolving approximately neutrally, 'cluttering' the germline genome, enabling it to enlarge over time.


Assuntos
Cilióforos , Edição de Genes , Cilióforos/genética , Genoma/genética , Elementos de DNA Transponíveis
2.
Trends Genet ; 38(5): 483-500, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227512

RESUMO

Programmed elimination of DNA during development yields somatic cell nuclei with dramatically different DNA sequence and content relative to germline nuclei, profoundly influencing genome architecture and stability. Whole-genome sequencing has significantly expanded the list of taxa known to exhibit this trait and has revealed the identity of excised genes and transposable elements (TEs) in certain taxa. Here, we compare the diverse mechanisms employed by ciliates, nematodes, copepods, and lamprey to downsize their genomes during development and propose tests of hypotheses about the evolution and/or maintenance of this trait. We explore possible functional roles that programmed DNA elimination (PDE) could play in genomic defense (especially against TEs), regulation of development, sex determination, co-option, and modulating nucleotypic effects, which together argue for a place in the mainstream investigation of genome evolution.


Assuntos
Elementos de DNA Transponíveis , Genômica , Sequência de Bases , Núcleo Celular/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Células Germinativas
3.
BMC Biol ; 22(1): 84, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610043

RESUMO

BACKGROUND: Post-translational transport is a vital process which ensures that each protein reaches its site of function. Though most do so via an ordered ER-to-Golgi route, an increasing number of proteins are now shown to bypass this conventional secretory pathway. RESULTS: In the Drosophila olfactory sensory neurons (OSNs), odorant receptors (ORs) are trafficked from the ER towards the cilia. Here, we show that Or22a, a receptor of various esters and alcoholic compounds, reaches the cilia partially through unconventional means. Or22a frequently present as puncta at the somatic cell body exit and within the dendrite prior to the cilia base. These rarely coincide with markers of either the intermediary ER-Golgi-intermediate-compartment (ERGIC) or Golgi structures. ERGIC and Golgi also displayed axonal localization biases, a further indication that at least some measure of OR transport may occur independently of their involvement. Additionally, neither the loss of several COPII genes involved in anterograde trafficking nor ERGIC itself affected puncta formation or Or22a transport to the cilium. Instead, we observed the consistent colocalization of Or22a puncta with Grasp65, the sole Drosophila homolog of mammalian GRASP55/Grh1, a marker of the unconventional pathway. The numbers of both Or22a and Grasp65-positive puncta were furthermore increased upon nutritional starvation, a condition known to enhance Golgi-bypassing secretory activity. CONCLUSIONS: Our results demonstrate an alternative route of Or22a transport, thus expanding the repertoire of unconventional secretion mechanisms in neurons.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/genética , Via Secretória , Drosophila , Cílios , Mamíferos
4.
J Neurophysiol ; 131(3): 455-471, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38264787

RESUMO

Olfactory receptor cells are primary sensory neurons that catch odor molecules in the olfactory system, and vomeronasal receptor cells catch pheromones in the vomeronasal system. When odor or pheromone molecules bind to receptor proteins expressed on the membrane of the olfactory cilia or vomeronasal microvilli, receptor potentials are generated in their receptor cells. This initial excitation is transmitted to the soma via dendrites, and action potentials are generated in the soma and/or axon and transmitted to the central nervous system. Thus, olfactory and vomeronasal receptor cells play an important role in converting chemical signals into electrical signals. In this review, the electrophysiological characteristics of ion channels in the somatic membrane of olfactory receptor cells and vomeronasal receptor cells in various species are described and the differences between the action potential dynamics of olfactory receptor cells and vomeronasal receptor cells are compared.


Assuntos
Neurônios Receptores Olfatórios , Órgão Vomeronasal , Neurônios Receptores Olfatórios/fisiologia , Potenciais de Ação , Canais Iônicos/metabolismo , Feromônios/metabolismo , Órgão Vomeronasal/metabolismo
5.
J Theor Biol ; : 111958, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362359

RESUMO

Although demographic studies have failed to find evidence of aging in certain animal species, classic evolutionary theories of aging struggle to explain how evolution could favor agelessness in such cases. Here, we develop mathematical models of the disposable soma theory to identify conditions in which agelessness would be evolutionarily favored. For any given type of damage that could accumulate and cause age-accelerating mortality risk, we find that evolution could select for its complete removal if the mortality risk it poses is severe enough and its repair does not pose too large of a penalty to reproduction. Environmental factors such as extrinsic mortality and the form of population density-dependent regulation also play a large role in determining the optimal rate of aging and whether agelessness should be evolutionarily favored. However, in a system with multiple sources of damage and multiple independent repair processes, avoiding aging is rarely evolutionarily favorable. Pleiotropic repair processes, such as those that could be present in asexual fissioning organisms, make agelessness more likely but do not guarantee it. Our results indicate that agelessness could be favored by evolution in narrow contexts but that multiple types of damage and repair make agelessness unlikely to arise in sufficiently complex organisms.

6.
Immun Ageing ; 21(1): 7, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212729

RESUMO

BACKGROUND: The Disposable Soma Theory of aging suggests a trade-off between energy allocation for growth, reproduction and somatic maintenance, including immunity. While trade-offs between reproduction and immunity are well documented, those involving growth remain under-explored. Rapid growth might deplete resources, reducing investment in maintenance, potentially leading to earlier or faster senescence and a shorter lifespan. However, rapid growth could limit exposure to parasitism before reaching adulthood, decreasing immunity needs. The insect immunity's components (cellular, enzymatic, and antibacterial) vary in cost, effectiveness, and duration. Despite overall immunity decline (immunosenescence), its components seem to age differently. We hypothesize that investment in these immune components is adjusted based on the resource cost of growth, longevity, and the associated risk of parasitism. RESULTS: We tested this hypothesis using the mealworm beetle, Tenebrio molitor as our experimental subject. By manipulating the larval environment, including three different temperatures and three relative humidity levels, we achieved a wide range of growth durations and longevities. Our main focus was on the relationship between growth duration, longevity, and specific immune components: hemocyte count, phenoloxidase activity, and antibacterial activity. We measured these immune parameters both before and after exposing the individuals to a standard bacterial immune challenge, enabling us to assess immune responses. These measurements were taken in both young and older adult beetles. Upon altering growth duration and longevity by modifying larval temperature, we observed a more pronounced investment in cellular and antibacterial defenses among individuals with slow growth and extended lifespans. Intriguingly, slower-growing and long-lived beetles exhibited reduced enzymatic activity. Similar results were found when manipulating larval growth duration and adult longevity through variations in relative humidity, with a particular focus on antibacterial activity. CONCLUSION: The impact of growth manipulation on immune senescence varies by the specific immune parameter under consideration. Yet, in slow-growing T. molitor, a clear decline in cellular and antibacterial immune responses with age was observed. This decline can be linked to their initially stronger immune response in early life. Furthermore, our study suggests an immune strategy favoring enhanced antibacterial activity among slow-growing and long-lived T. molitor individuals.

7.
BMC Public Health ; 24(1): 219, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238839

RESUMO

BACKGROUND: Despite the epidemiological and economic relevance of the irritable bowel syndrome (IBS), there is a lack of research on what the general public knows and thinks about this condition (IBS literacy). Therefore, the aim of this study was to explore public knowledge and beliefs about IBS in Germany. Moreover, associations of knowledge and beliefs about IBS with socio-demographic characteristics as well as illness and treatment experiences were analysed. METHODS: Analyses made use of a national telephone survey (N = 1,205). A carefully developed vignette describing a person with typical symptoms of IBS was presented. Respondents were then asked to name the disease in question and beliefs about causes and treatment options were assessed. For the analyses respondents were divided into three groups: (1) people who never had IBS symptoms, (2) people who had or have IBS symptoms but never were in treatment and (3) individuals who reported to be or have been treated for IBS symptoms. RESULTS: Less than 4% of the respondents recognized IBS after presentation of the vignette. About 75% positively evaluated treatability while psychotherapy was evaluated more effective than medication. Stress and unhealthy lifestyle were the most frequently endorsed possible causes of the presented IBS symptoms. There were variations in knowledge and beliefs about IBS according to age, gender, and education. We found minor differences in beliefs and knowledge between individuals who had or have symptoms but never were in treatment and those without respective illness experience. Respondents with illness/treatment experiences rated their knowledge significantly better than those without any experiences. CONCLUSIONS: Results indicate low levels of public knowledge about IBS regarding illness recognition in Germany. A majority disagreed that they have good knowledge about IBS symptoms. Against this background, it seems reasonable to develop and test interventions to improve IBS literacy by increasing knowledge about symptoms, causes and treatment options.


Assuntos
Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/terapia , Alemanha
8.
BMC Genomics ; 24(1): 654, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904088

RESUMO

BACKGROUND: Cell type specialization is a hallmark of complex multicellular organisms and is usually established through implementation of cell-type-specific gene expression programs. The multicellular green alga Volvox carteri has just two cell types, germ and soma, that have previously been shown to have very different transcriptome compositions which match their specialized roles. Here we interrogated another potential mechanism for differentiation in V. carteri, cell type specific alternative transcript isoforms (CTSAI). METHODS: We used pre-existing predictions of alternative transcripts and de novo transcript assembly with HISAT2 and Ballgown software to compile a list of loci with two or more transcript isoforms, identified a small subset that were candidates for CTSAI, and manually curated this subset of genes to remove false positives. We experimentally verified three candidates using semi-quantitative RT-PCR to assess relative isoform abundance in each cell type. RESULTS: Of the 1978 loci with two or more predicted transcript isoforms 67 of these also showed cell type isoform expression biases. After curation 15 strong candidates for CTSAI were identified, three of which were experimentally verified, and their predicted gene product functions were evaluated in light of potential cell type specific roles. A comparison of genes with predicted alternative splicing from Chlamydomonas reinhardtii, a unicellular relative of V. carteri, identified little overlap between ortholog pairs with alternative splicing in both species. Finally, we interrogated cell type expression patterns of 126 V. carteri predicted RNA binding protein (RBP) encoding genes and found 40 that showed either somatic or germ cell expression bias. These RBPs are potential mediators of CTSAI in V. carteri and suggest possible pre-adaptation for cell type specific RNA processing and a potential path for generating CTSAI in the early ancestors of metazoans and plants. CONCLUSIONS: We predicted numerous instances of alternative transcript isoforms in Volvox, only a small subset of which showed cell type specific isoform expression bias. However, the validated examples of CTSAI supported existing hypotheses about cell type specialization in V. carteri, and also suggested new hypotheses about mechanisms of functional specialization for their gene products. Our data imply that CTSAI operates as a minor but important component of V. carteri cellular differentiation and could be used as a model for how alternative isoforms emerge and co-evolve with cell type specialization.


Assuntos
Volvox , Volvox/genética , Transcriptoma , Isoformas de Proteínas/genética
9.
J Neurochem ; 165(2): 211-229, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807153

RESUMO

Astrotactin2 (ASTN2) regulates neuronal migration and synaptic strength through the trafficking and degradation of surface proteins. Deletion of ASTN2 in copy number variants has been identified in patients with schizophrenia, bipolar disorder, and autism spectrum disorder in copy number variant (CNV) analysis. Disruption of ASTN2 is a risk factor for these neurodevelopmental disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. However, the importance of ASTN2 in physiological functions remains poorly understood. To elucidate the physiological functions of ASTN2, we investigated whether deficiency of ASTN2 affects cognitive and/or emotional behaviors and neurotransmissions using ASTN2-deficient mice. Astn2 knockout (KO) mice produced by CRISPR/Cas9 technique showed no obvious differences in physical characteristics and circadian rhythm. Astn2 KO mice showed increased exploratory activity in a novel environment, social behavior and impulsivity, or decreased despair-, anxiety-like behaviors and exploratory preference for the novel object. Some behavioral abnormalities, such as increased exploratory activity and impulsivity, or decreased exploratory preference were specifically attenuated by risperidone, but not by haloperidol. While, the both drugs did not affect any emotion-related behavioral abnormalities in Astn2 KO mice. Dopamine contents were decreased in the striatum, and serotonin or dopamine turnover were increased in the striatum, nucleus accumbens, and amygdala of Astn2 KO mice. In morphological analyses, thinning of neural cell layers in the hippocampus, reduction of neural cell bodies in the prefrontal cortex, and decrease in spine density and PSD95 protein in both tissues were observed in Astn2 KO mice. The present findings suggest that ASTN2 deficiency develops some emotional or cognitive impairments related to monoaminergic dysfunctions and abnormal neuronal morphogenesis with shrinkage of neuronal soma. ASTN2 protein may contribute to the pathogenic mechanism and symptom onset of mental disorders.


Assuntos
Transtorno do Espectro Autista , Dopamina , Animais , Camundongos , Cognição , Dopamina/metabolismo , Emoções , Glicoproteínas/metabolismo , Camundongos Knockout , Morfogênese
10.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34662394

RESUMO

How, when, and why do organisms, their tissues, and their cells age remain challenging issues, although researchers have identified multiple mechanistic causes of aging, and three major evolutionary theories have been developed to unravel the ultimate causes of organismal aging. A central hypothesis of these theories is that the strength of natural selection decreases with age. However, empirical evidence on when, why, and how organisms age is phylogenetically limited, especially in natural populations. Here, we developed generic comparisons of gene co-expression networks that quantify and dissect the heterogeneity of gene co-expression in conspecific individuals from different age-classes to provide topological evidence about some mechanical and fundamental causes of organismal aging. We applied this approach to investigate the complexity of some proximal and ultimate causes of aging phenotypes in a natural population of the greater mouse-eared bat Myotis myotis, a remarkably long-lived species given its body size and metabolic rate, with available longitudinal blood transcriptomes. M. myotis gene co-expression networks become increasingly fragmented with age, suggesting an erosion of the strength of natural selection and a general dysregulation of gene co-expression in aging bats. However, selective pressures remain sufficiently strong to allow successive emergence of homogeneous age-specific gene co-expression patterns, for at least 7 years. Thus, older individuals from long-lived species appear to sit at an evolutionary crossroad: as they age, they experience both a decrease in the strength of natural selection and a targeted selection for very specific biological processes, further inviting to refine a central hypothesis in evolutionary aging theories.


Assuntos
Evolução Biológica , Seleção Genética , Transcriptoma
11.
Proc Biol Sci ; 290(1996): 20221556, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37040805

RESUMO

Fasting increases lifespan in invertebrates, improves biomarkers of health in vertebrates and is increasingly proposed as a promising route to improve human health. Nevertheless, little is known about how fasted animals use resources upon refeeding, and how such decisions affect putative trade-offs between somatic growth and repair, reproduction and gamete quality. Such fasting-induced trade-offs are based on strong theoretical foundations and have been recently discovered in invertebrates, but the data on vertebrates are lacking. Here, we report that fasted female zebrafish, Danio rerio, increase investment in soma upon refeeding, but it comes at a cost of egg quality. Specifically, an increase in fin regrowth was accompanied by a reduction in 24 h post-fertilization offspring survival. Refed males showed a reduction in sperm velocity and impaired 24 h post-fertilization offspring survival. These findings underscore the necessity of considering the impact on reproduction when assessing evolutionary and biomedical implications of lifespan-extending treatments in females and males and call for careful evaluation of the effects of intermittent fasting on fertilization.


Assuntos
Sêmen , Peixe-Zebra , Animais , Humanos , Masculino , Feminino , Jejum , Reprodução , Células Germinativas , Invertebrados
12.
Artigo em Inglês | MEDLINE | ID: mdl-38078561

RESUMO

Germ cells (reproductive cells and their progenitors) give rise to the next generation in sexually reproducing organisms. The loss or removal of germ cells often leads to sterility in established research organisms such as the fruit fly, nematodes, frog, and mouse. The failure to regenerate germ cells in these organisms reinforced the dogma of germline-soma barrier in which germ cells are set-aside during embryogenesis and cannot be replaced by somatic cells. However, in stark contrast, many animals including segmented worms (annelids), hydrozoans, planaria, sea stars, sea urchins, and tunicates can regenerate germ cells. Here I review germ cell and gonad regeneration in annelids, a rich history of research that dates back to the early 20th century in this highly regenerative group. Examples include annelids from across the annelid phylogeny, across developmental stages, and reproductive strategies. Adult annelids regenerate germ cells as a part of regeneration, grafting, and asexual reproduction. Annelids can also recover germ cells after ablation of germ cell progenitors in the embryos. I present a framework to investigate cellular sources of germ cell regeneration in annelids, and discuss the literature that supports different possibilities within this framework, where germ-soma separation may or may not be preserved. With contemporary genetic-lineage tracing and bioinformatics tools, and several genetically enabled annelid models, we are at the brink of answering the big questions that puzzled many for over more than a century.

13.
Chromosome Res ; 30(2-3): 255-272, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35416568

RESUMO

Germline-restricted chromosomes (GRCs) are accessory chromosomes that occur only in germ cells. They are eliminated from somatic cells through programmed DNA elimination during embryo development. GRCs have been observed in several unrelated animal taxa and show peculiar modes of non-Mendelian inheritance and within-individual elimination. Recent cytogenetic and phylogenomic evidence suggests that a GRC is present across the species-rich songbirds, but absent in non-passerine birds, implying that over half of all 10,500 bird species have extensive germline/soma genome differences. Here, we review recent insights gained from genomic, transcriptomic, and cytogenetic approaches with regard to the genetic content, phylogenetic distribution, and inheritance of the songbird GRC. While many questions remain unsolved in terms of GRC inheritance, elimination, and function, we discuss plausible scenarios and future directions for understanding this widespread form of programmed DNA elimination.


Assuntos
Aves Canoras , Animais , Cromossomos/genética , DNA , Sonhos , Células Germinativas , Filogenia , Aves Canoras/genética
14.
Biol Cybern ; 117(1-2): 143-162, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37129628

RESUMO

A principal cue for sound source localization is the difference in arrival times of sounds at an animal's two ears (interaural time difference, ITD). Neurons that process ITDs are specialized to compare the timing of inputs with submillisecond precision. In the barn owl, ITD processing begins in the nucleus laminaris (NL) region of the auditory brain stem. Remarkably, NL neurons are sensitive to ITDs in high-frequency sounds (kilohertz-range). This contrasts with ITD-based sound localization in analogous regions in mammals where ITD sensitivity is typically restricted to lower-frequency sounds. Guided by previous experiments and modeling studies of tone-evoked responses of NL neurons, we propose NL neurons achieve high-frequency ITD sensitivity if they respond selectively to the small-amplitude, high-frequency oscillations in their inputs, and remain relatively non-responsive to mean input level. We use a biophysically based model to study the effects of soma-axon coupling on dynamics and function in NL neurons. First, we show that electrical separation of the soma from the axon region in the neuron enhances high-frequency ITD sensitivity. This soma-axon coupling configuration promotes linear subthreshold dynamics and rapid spike initiation, making the model more responsive to input oscillations, rather than mean input level. Second, we provide new evidence for the essential role of phasic dynamics for high-frequency neural coincidence detection. Transforming our model to the phasic firing mode further tunes the model to respond selectively to the oscillating inputs that carry ITD information. Similar structural and dynamical mechanisms specialize mammalian auditory brain stem neurons for ITD sensitivity, and thus, our work identifies common principles of ITD processing and neural coincidence detection across species and for sounds at widely different frequencies.


Assuntos
Localização de Som , Estrigiformes , Animais , Estrigiformes/fisiologia , Neurônios/fisiologia , Localização de Som/fisiologia , Vias Auditivas/fisiologia , Estimulação Acústica , Mamíferos
15.
Cereb Cortex ; 32(11): 2321-2331, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34546353

RESUMO

Soma spacing and dendritic arborization during brain development are key events for the establishment of proper neural circuitry and function. Transcription factor Satb2 is a molecular node in regulating the development of the cerebral cortex, as shown by the facts that Satb2 is required for the regionalization of retrosplenial cortex, the determination of callosal neuron fate, and the regulation of soma spacing and dendritic self-avoidance of cortical pyramidal neurons. In this study, we explored downstream effectors that mediate the Satb2-implicated soma spacing and dendritic self-avoidance. First, RNA-seq analysis of the cortex revealed differentially expressed genes between control and Satb2 CKO mice. Among them, EphA7 transcription was dramatically increased in layers II/III of Satb2 CKO cortex. Overexpression of EphA7 in the late-born cortical neurons of wild-type mice via in utero electroporation resulted in soma clumping and impaired self-avoidance of affected pyramidal neurons, which resembles the phenotypes caused by knockdown of Satb2 expression. Importantly, the phenotypes by Satb2 knockdown was rescued by reducing EphA7 expression in the cortex. Finally, ChIP and luciferase reporter assays indicated a direct suppression of EphA7 expression by Satb2. These findings provide new insights into the complexity of transcriptional regulation of the morphogenesis of cerebral cortex.


Assuntos
Córtex Cerebral , Neurônios , Animais , Corpo Celular/metabolismo , Córtex Cerebral/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz , Camundongos , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptor EphA7 , Fatores de Transcrição/metabolismo
16.
Bioessays ; 43(12): e2100195, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655094

RESUMO

In sexually reproducing organisms maintenance of germ stem cell immortality is fundamental for transmitting genetic material to future generations. While previous research has mainly considered intrinsic regulatory mechanisms in the germline, our recent study has found a direct contribution of somatic cells in preserving germline immortality via the somatically expressed endoribonuclease ENDU-2 in Caenorhabditis elegans. We have identified ENDU-2 as a secreted protein that can be taken up by the germline. Here, we discuss how ENDU-2 might uncouple its RNA-binding and RNA-cleavage activities to control gene expression via either an endoribonuclease dependent or an independent way. We also speculate on a possible functional conservation of its mammalian homologs in mediating cell-cell communication as well as its potential significance in understanding human pathogenesis such as cancer development.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Endorribonucleases/genética , Células Germinativas , Humanos , Células-Tronco
17.
Mol Cell Proteomics ; 20: 100023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33293461

RESUMO

Gonadal soma-derived factor (gsdf) has been demonstrated to be essential for testicular differentiation in medaka (Oryzias latipes). To understand the protein dynamics of Gsdf in spermatogenesis regulation, we used a His-tag "pull-down" assay coupled with shotgun LC-MS/MS to identify a group of potential interacting partners for Gsdf, which included cytoplasmic dynein light chain 2, eukaryotic polypeptide elongation factor 1 alpha (eEF1α), and actin filaments in the mature medaka testis. As for the interaction with transforming growth factor ß-dynein being critical for spermatogonial division in Drosophila melanogaster, the physical interactions of Gsdf-dynein and Gsdf-eEF1α were identified through a yeast 2-hybrid screening of an adult testis cDNA library using Gsdf as bait, which were verified by a paired yeast 2-hybrid assay. Coimmunoprecipitation of Gsdf and eEF1α was defined in adult testes as supporting the requirement of a Gsdf and eEF1α interaction in testis development. Proteomics analysis (data are available via ProteomeXchange with identifier PXD022153) and ultrastructural observations showed that Gsdf deficiency activated eEF1α-mediated protein synthesis and ribosomal biogenesis, which in turn led to the differentiation of undifferentiated germ cells. Thus, our results provide a framework and new insight into the coordination of a Gsdf (transforming growth factor ß) and eEF1α complex in the basic processes of germ cell proliferation, transcriptional and translational control of sexual RNA, which may be fundamentally conserved across the phyla during sexual differentiation.


Assuntos
Proteínas de Peixes/metabolismo , Células Germinativas/citologia , Oryzias/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células , Feminino , Masculino , Oryzias/genética , Proteômica , RNA/metabolismo , Testículo/citologia , Testículo/metabolismo , Testículo/ultraestrutura , Fator de Crescimento Transformador beta/genética
18.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834647

RESUMO

In our recent work, we observed that triple-negative breast cancer MDA-MB-231 cells respond to doxorubicin (DOX) via "mitotic slippage" (MS), discarding cytosolic damaged DNA during the process that provides their resistance to this genotoxic treatment. We also noted two populations of polyploid giant cells: those budding surviving offspring, versus those reaching huge ploidy by repeated MS and persisting for several weeks. Their separate roles in the recovery from treatment remained unclear. The current study was devoted to characterising the origin and relationship of these two sub-populations in the context of MS. MS was hallmarked by the emergence of nuclear YAP1/OCT4A/MOS/EMI2-positivity featuring a soma-germ transition to the meiotic-metaphase-arrested "maternal germ cell". In silico, the link between modules identified in the inflammatory innate immune response to cytosolic DNA and the reproductive module of female pregnancy (upregulating placenta developmental genes) was observed in polyploid giant cells. Asymmetry of the two subnuclei types, one repairing DNA and releasing buds enriched by CDC42/ACTIN/TUBULIN and the other persisting and degrading DNA in a polyploid giant cell, was revealed. We propose that when arrested in MS, a "maternal cancer germ cell" may be parthenogenetically stimulated by the placental proto-oncogene parathyroid-hormone-like-hormone, increasing calcium, thus creating a "female pregnancy-like" system within a single polyploid giant cancer cell.


Assuntos
Neoplasias , Placenta , Feminino , Gravidez , Humanos , Células Gigantes , Poliploidia , DNA , Hormônios
19.
Semin Cell Dev Biol ; 97: 167-171, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558347

RESUMO

Gap junctions, expressed in most tissues of the body, allow for the cytoplasmic coupling of adjacent cells and promote tissue cooperation. Gap junctions connect also the soma and the germline in many animals, and transmit somatic signals that are crucial for germline maturation and integrity. In this review, we examine the involvement of gap junctions in the relay of information between the soma and the germline, and ask whether such communication could have consequences for the progeny. While the influence of parental experiences on descendants is of great interest, the possibility that gap junctions participate in the transmission of information across generations is largely unexplored.


Assuntos
Carisoprodol/metabolismo , Junções Comunicantes/metabolismo , Células Germinativas/metabolismo , Humanos
20.
Neuroimage ; 251: 118976, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35168088

RESUMO

Characterizing neural tissue microstructure is a critical goal for future neuroimaging. Diffusion MRI (dMRI) provides contrasts that reflect diffusing spins' interactions with myriad microstructural features of biological systems. However, the specificity of dMRI remains limited due to the ambiguity of its signals vis-à-vis the underlying microstructure. To improve specificity, biophysical models of white matter (WM) typically express dMRI signals according to the Standard Model (SM) and have more recently in gray matter (GM) taken spherical compartments into account (the SANDI model) in attempts to represent cell soma. The validity of the assumptions underlying these models, however, remains largely undetermined, especially in GM. To validate these assumptions experimentally, observing their unique, functional properties, such as the b-1/2 power-law associated with one-dimensional diffusion, has emerged as a fruitful strategy. The absence of this signature in GM, in turn, has been explained by neurite water exchange, non-linear morphology, and/or by obscuring soma signal contributions. Here, we present diffusion simulations in realistic neurons demonstrating that curvature and branching does not destroy the stick power-law behavior in impermeable neurites, but also that their signal is drowned by the soma signal under typical experimental conditions. Nevertheless, by studying the GM dMRI signal's behavior as a function of diffusion weighting as well as time, we identify an attainable experimental regime in which the neurite signal dominates. Furthermore, we find that exchange-driven time dependence produces a signal behavior opposite to that which would be expected from restricted diffusion, thereby providing a functional signature that disambiguates the two effects. We present data from dMRI experiments in ex vivo rat brain at ultrahigh field of 16.4T and observe a time dependence that is consistent with substantial exchange but also with a GM stick power-law. The first finding suggests significant water exchange between neurites and the extracellular space while the second suggests a small sub-population of impermeable neurites. To quantify these observations, we harness the Kärger exchange model and incorporate the corresponding signal time dependence in the SM and SANDI models.


Assuntos
Substância Cinzenta , Substância Branca , Encéfalo/fisiologia , Córtex Cerebral , Imagem de Difusão por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Humanos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA