Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 85(2): 790-801, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32894618

RESUMO

PURPOSE: Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. METHODS: In this work, we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. RESULTS: We have implemented this sequence, both via simulation and on a preclinical scanner, to demonstrate its feasibility, in both a 1H phantom and with hyperpolarized 13C pyruvate in vivo. CONCLUSIONS: This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation.


Assuntos
Imagem Ecoplanar , Ácido Pirúvico , Isótopos de Carbono , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Estudos Retrospectivos
2.
Magn Reson Med ; 77(4): 1419-1428, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27017966

RESUMO

PURPOSE: To develop a specialized multislice, single-acquisition approach to detect the metabolites of hyperpolarized (HP) [2-13 C]dihydroxyacetone (DHAc) to probe gluconeogenesis in vivo, which have a broad 144 ppm spectral range (∼4.6 kHz at 3T). A novel multiband radio-frequency (RF) excitation pulse was designed for independent flip angle control over five to six spectral-spatial (SPSP) excitation bands, each corrected for chemical shift misregistration effects. METHODS: Specialized multiband SPSP RF pulses were designed, tested, and applied to investigate HP [2-13 C]DHAc metabolism in kidney and liver of fasted rats with dynamic 13 C-MR spectroscopy and an optimal flip angle scheme. For comparison, experiments were also performed with narrow-band slice-selective RF pulses and a sequential change of the frequency offset to cover the five frequency bands of interest. RESULTS: The SPSP pulses provided a controllable spectral profile free of baseline distortion with improved signal to noise of the metabolite peaks, allowing for quantification of the metabolic products. We observed organ-specific differences in DHAc metabolism. There was two to five times more [2-13 C]phosphoenolpyruvate and about 19 times more [2-13 C]glycerol 3-phosphate in the liver than in the kidney. CONCLUSION: A multiband SPSP RF pulse covering a spectral range over 144 ppm enabled in vivo characterization of HP [2-13 C]DHAc metabolism in rat liver and kidney. Magn Reson Med 77:1419-1428, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Di-Hidroxiacetona/metabolismo , Glucose/biossíntese , Rim/metabolismo , Fígado/metabolismo , Processamento de Sinais Assistido por Computador , Animais , Gluconeogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Magn Reson Med ; 65(2): 370-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21264930

RESUMO

Susceptibility artifacts and transmission radio frequency (RF) field (B(1) +) inhomogeneity are major limitations in high-field gradient echo MRI. Previously proposed numerical 2D spectral-spatial RF pulses have been shown to be promising for reducing the through-plane signal loss susceptibility artifact by incorporating a frequency-dependent through-plane phase correction. This method has recently been extended to 4D spectral-spatial RF pulse designs for reducing B(1) + inhomogeneity as well as the signal loss. In this manuscript, we present simple analytical pulse designs for constructing 2D and 4D spectral-spatial RF pulses as an alternative to the numerical approaches. The 2D pulse capable of exciting slices with reduced signal loss and is lipid suppressing. The 4D pulse simultaneously corrects signal loss as well as the B(1) + inhomogeneity from a body coil transmitter. The pulses are demonstrated with simulations and with gradient echo phantom and brain images at 3T using a standard RF body coil. The pulses were observed to work well for multiple slices and several volunteers.


Assuntos
Artefatos , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ondas de Rádio
4.
Metabolites ; 11(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198574

RESUMO

Hyperpolarized metabolic MRI with 13C-labeled agents has emerged as a powerful technique for in vivo assessments of real-time metabolism that can be used across scales of cells, tissue slices, animal models, and human subjects. Hyperpolarized contrast agents have unique properties compared to conventional MRI scanning and MRI contrast agents that require specialized imaging methods. Hyperpolarized contrast agents have a limited amount of available signal, irreversible decay back to thermal equilibrium, bolus injection and perfusion kinetics, cellular uptake and metabolic conversion kinetics, and frequency shifts between metabolites. This article describes state-of-the-art methods for hyperpolarized metabolic MRI, summarizing data acquisition, reconstruction, and analysis methods in order to guide the design and execution of studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA