Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biol Reprod ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993049

RESUMO

Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.

2.
Cryobiology ; 100: 32-39, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831369

RESUMO

The aim of this study was to establish a method for the cryopreservation of spermatogonia of the yellowtail (Seriola quinqueradiata), which is the most commonly farmed fish in Japan. Testicular cells were prepared by enzymatic dissociation of testicular fragments containing an abundance of type A spermatogonia and were added to cryomedium containing dimethyl sulfoxide (DMSO), ethylene glycol, glycerol, or propylene glycol at concentrations of 0.5-2.5 M. The cells were then frozen and stored in liquid nitrogen for 3 days. After thawing, their survival and transplantability were evaluated. Testicular cells were most successfully cryopreserved in 1.0 M DMSO as indicated by survival of 34% of cells. Furthermore, in situ hybridization using the yellowtail vasa probe showed that these recovered cells contained a similar proportion of germ cells to fresh testicular cells before freezing. Transplantation of the recovered cells into the peritoneal cavities of allogeneic larvae resulted in 94% of surviving recipients having donor-derived germ cells in their gonads after 28 days. Sperm were then collected from seven randomly selected recipients once they reached 2 years of age and used to fertilize wild-type eggs, which led to an average of 26% of the first filial (F1) offspring being derived from donor fish, as confirmed through the use of microsatellite markers. Thus, we successfully cryopreserved yellowtail spermatogonia and produced functional sperm via intraperitoneal transplantation into allogeneic recipients.


Assuntos
Criopreservação , Transplante de Células-Tronco Hematopoéticas , Animais , Criopreservação/métodos , Masculino , Espermatogônias , Espermatozoides , Testículo
3.
Biol Reprod ; 100(2): 535-546, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252024

RESUMO

A stable system for producing sterile domesticated fish is required to prevent genetic contamination to native populations caused by aquaculture escapees. The objective of this study was to develop a system to mass produce stock for aquaculture that is genetically sterile by surrogate broodstock via spermatogonial transplantation (SGTP). We previously discovered that female medaka carrying mutations on the follicle-stimulating hormone receptor (fshr) gene become sterile. In this study, we demonstrated that sterile hybrid recipient females that received spermatogonia isolated from sex-reversed XX males (fshr (-/-)) recovered their fertility and produced only donor-derived fshr (-) X eggs. Natural mating between these females and fshr (-/-) sex-reversed XX males successfully produced large numbers of sterile fshr (-/-) female offspring. In conclusion, we established a new strategy for efficient mass production of sterile fish. This system can be applied to any aquaculture species for which SGTP and methods for producing sterile recipients can be established.


Assuntos
Infertilidade/veterinária , Oryzias/genética , Oryzias/fisiologia , Receptores do FSH/genética , Espermatogônias/fisiologia , Animais , Inibidores da Aromatase/farmacologia , Feminino , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Genótipo , Hibridização Genética , Infertilidade/genética , Masculino
4.
Reprod Med Biol ; 17(4): 398-406, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30377393

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) are the origin of sperm and defined by their functions of "colonization in the testis" and "spermatogenesis". In vitro manipulation techniques of SSCs contribute to a wide variety of fields including reproductive medicine and molecular breeding. This review presents the recent progress of the biology and manipulation technologies of SSCs. METHODS: Research articles regarding SSC biology and technologies were collected and summarized. MAIN FINDINGS: Dr. Ralph Brinster developed the spermatogonial transplantation technique that enables SSC detection by functional markers. Using this technique, cultured SSCs, termed germline stem (GS) cells, were established from the mouse. GS cells provide the opportunity to produce genome-edited animals without using zygotes. In vitro spermatogenesis allows production of haploid germ cells from GS cells without spermatogonial transplantation. The recent advancement of pluripotent stem cell culture techniques has also achieved production of functional GS-like cells in addition to male/female germ cells. CONCLUSION: Although in vitro manipulation techniques of GS cells have been developed for the mouse, it appears to be difficult to apply these techniques to other species. Understanding and control of interspecies barriers are required to extend this technology to nonrodent mammals.

5.
Cryobiology ; 72(2): 165-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26827783

RESUMO

Because of the lack of cryopreservation techniques for fish eggs and embryos, cryopreservation of fish spermatogonia and subsequent generation of eggs and sperm would be an exit strategy for the long-term preservation of genetic resources. This study aimed to optimize cryoprotectants, cooling rates, and thawing temperatures for slow freezing of spermatogonia from endangered Manchurian trout (Brachymystax lenok). Whole testes were frozen with a cryomedium containing 1.3 M methanol, 0.2 M trehalose, and 10% egg yolk at a cooling rate of -1 °C/min and then stored in liquid nitrogen for 2 days. After thawing at 30 °C in a water bath, testicular cells from thawed testes were intraperitoneally transplanted into allogeneic triploid hatchlings. Transplanted spermatogonia migrated toward and were incorporated into recipient gonads, where they underwent gametogenesis. Transplantation efficiency did not significantly differ between frozen and fresh testes, demonstrating that Manchurian trout spermatogonia can be successfully cryopreserved in liquid nitrogen.


Assuntos
Criopreservação/métodos , Gametogênese/fisiologia , Preservação de Órgãos/métodos , Salmonidae/embriologia , Preservação do Sêmen/métodos , Espermatogônias/citologia , Testículo/citologia , Animais , Crioprotetores/farmacologia , Espécies em Perigo de Extinção , Congelamento , Gametogênese/efeitos dos fármacos , Masculino , Espermatogônias/transplante
6.
Mol Reprod Dev ; 80(10): 871-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913406

RESUMO

We developed a spermatogonial transplantation technique to produce donor-derived gametes in surrogate fish. Our ultimate aim is to establish surrogate broodstock that can produce bluefin tuna. We previously determined that only type A spermatogonia (ASG) could colonize recipient gonads in salmonids. Therefore, it is necessary to develop a precise molecular marker that can distinguish ASG in order to develop efficient spermatogonial transplantation methods. In this study, the Pacific bluefin tuna (Thunnus orientalis) dead end (BFTdnd) gene was identified as a specific marker for ASG. In situ hybridization and RT-PCR analysis with various types of spermatogenic cell populations captured by laser microdissection revealed that localization of BFTdnd mRNA was restricted to ASG, and not detected in other differentiated spermatogenic cells. In order to determine if BFTdnd can be used as a molecular marker to identify germ cells with high transplantability, transplantation of dissociated testicular cells isolated from juvenile, immature, and mature Pacific bluefin tuna, which have different proportions of dnd-positive ASG, were performed using chub mackerel as the surrogate recipient species. Colonization of transplanted donor germ cells was only successful with testicular cells from immature Pacific Bluefin tuna, which contained higher proportions of dnd-positive ASG than juvenile and mature fish. Thus, BFTdnd is a useful tool for identifying highly transplantable ASG for spermatogonial transplantation.


Assuntos
Cyprinidae/embriologia , Proteínas de Peixes/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espermatogônias/transplante , Atum/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Proteínas de Peixes/genética , Marcadores Genéticos/genética , Masculino , Dados de Sequência Molecular , Ovário/embriologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Análise de Sequência de DNA , Espermatogônias/classificação , Espermatogônias/metabolismo , Testículo/citologia
7.
Gen Comp Endocrinol ; 192: 95-106, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792279

RESUMO

In association with in vitro culture and transplantation, isolation of spermatogonial stem cells (SSCs) is an excellent approach for investigating spermatogonial physiology in vertebrates. However, in fish, the lack of SSC molecular markers represents a great limitation to identify/purify these cells, rendering it difficult to apply several valuable biotechnologies in fish-farming. Herein, we describe potential molecular markers, which served to phenotypically characterize, cultivate and transplant Nile tilapia SSCs. Immunolocalization revealed that Gfra1 is expressed exclusively in single type A undifferentiated spermatogonia (Aund, presumptive SSCs). Likewise, the expression of Nanos2 protein was observed in Aund cells. However, Nanos2-positive spermatogonia have also been identified in cysts with two to eight germ cells that encompass type A differentiated spermatogonia (Adiff). Moreover, we also established effective primary culture conditions that allowed the Nile tilapia spermatogonia to expand their population for at least one month while conserving their original undifferentiated (stemness) characteristics. The maintenance of Aund spermatogonial phenotype was demonstrated by the expression of early germ cell specific markers and, more convincingly, by their ability to colonize and develop in the busulfan-treated adult Nile tilapia recipient testes after germ cell transplantation. In addition to advancing our knowledge on the identity and physiology of fish SSCs, these findings provide the first step in establishing a system that will allow fish SSCs expansion in vitro, representing an important progress towards the development of new biotechnologies in aquaculture, including the possibility of producing transgenic fish.


Assuntos
Ciclídeos/metabolismo , Espermatogônias/citologia , Células-Tronco/citologia , Animais , Proteínas de Peixes/metabolismo , Masculino , Transplante de Células-Tronco , Testículo/citologia
8.
Mar Biotechnol (NY) ; 24(2): 417-429, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35380303

RESUMO

In germ cell transplantation experiments, the use of sterile recipients that do not produce their own gametes is an important prerequisite. Triploidization and dnd gene knockdown (KD) methods have been widely used to produce sterile fish. However, triploidization does not produce complete sterility in some fish species, and gene KD is labor and time intensive since it requires microinjection into individual fertilized eggs. To overcome these problems, in this study, we generated homozygous mutants of the dead end (dnd) gene in rainbow trout (Oncorhynchus mykiss) using the clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, analyzed their reproductive capacity, and evaluated their suitability as recipients for germ cell transplantation. By crossing F1 heterozygous mutants produced from founders subjected to genome editing, an F2 generation consisting of approximately 1/4 homozygous knockout mutants (dnd KO) was obtained. The dnd KO hatchlings retained the same number of primordial germ cells (PGCs) as the wild-type (WT) individuals, after which the number gradually decreased. At 1 year of age, germ cells were completely absent in all analyzed individuals. To evaluate the dnd KO individuals as recipients for germ cell transplantation, germ cells prepared from donor individuals were transplanted into the abdominal cavity of dnd KO hatchlings. These cells migrated to the recipient gonads, where they initiated gametogenesis. The mature recipient individuals produced only donor-derived sperm and eggs in equivalent numbers to WT rainbow trout. These results indicate that dnd KO rainbow trout are suitable recipient candidates possessing a high capacity to nurse donor-derived germ cells.


Assuntos
Infertilidade , Oncorhynchus mykiss , Animais , Transplante de Células/métodos , Técnicas de Inativação de Genes , Células Germinativas/transplante , Gônadas , Oncorhynchus mykiss/genética
9.
Biomedicines ; 10(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36551973

RESUMO

Plasticizers give flexibility to a wide range of consumer and medical plastic products. Among them, phthalate esters are recognized as endocrine disruptors that target male reproductive functions. With this notion, past studies designed and produced alternative plasticizers that could replace phthalates with limited toxicity to the environment and to male reproductive functions. Here, we focused on one reproductive cell type that was not investigated in past studies-spermatogonial stem cells (SSCs)-and examined in vitro the effects on 22 compounds (seven plasticizers currently in use and 15 newly synthesized potential alternative plasticizers) for their effects on SSCs. Our in vitro compound screening analyses showed that a majority of the compounds examined had a limited level of toxicity to SSCs. Yet, some commercial plasticizers and their derivatives, such as DEHP (di-(2-ethylhexyl) phthalate) and MEHP (mono-(2-ethylhexyl) phthalate), were detrimental at 10-5 to 10-4 M. Among new compounds, some of maleate- and fumarate-derivatives showed toxic effects. In contrast, no detrimental effects were detected with two new compounds, BDDB (1,4 butanediol dibenzoate) and DOS (dioctyl succinate). Furthermore, SSCs that were exposed to BDDB and DOS in vitro successfully established spermatogenic colonies in testes of recipient mice after transplantation. These results demonstrate that SSC culture acts as an effective platform for toxicological tests on SSC function and provide novel information that two new compounds, BDDB and DOS, are alternative plasticizers that do not have significant negative impacts on SSC integrity.

10.
Methods Mol Biol ; 2155: 165-182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32474876

RESUMO

Spermatogonial stem cells (SSCs) possess both self-renewal and differentiation abilities to sustain lifelong production of enormous numbers of spermatozoa in males. SSCs hold a unique position among tissue-specific stem cells in adults because of their ability to transmit the genetic information to subsequent generations. Ex vivo expansion of SSCs in conjunction with their transplantation is highly invaluable to study SSCs and develop new reproductive technologies for therapeutic applications. In this chapter, we describe a culture system involving a simple serum-free medium for mouse SSCs. Elimination of the serum from the culture is important to enhance the effects of exogenous factors, which are rather masked by the serum, and to avert the serum-induced inflammatory responses of testicular mesenchymal cells, which cause adverse effects on SSC proliferation. Consequently, using this culture system has proven for the first time that glial cell line-derived neurotrophic factor (GDNF) was found to be the key factor to drive the self-renewing proliferation of SSCs, and fibroblast growth factor 2 enhanced the GDNF-dependent proliferation of SSCs. Besides determining these two key cytokines, the simplicity of the system enabled individual modification of its components to develop long-term cultures of rat and rabbit SSCs. The basics of these culture systems will enable development of the culture conditions for human and other mammalian SSCs in the near future.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/metabolismo , Técnicas de Cultura de Células , Espermatogônias/citologia , Animais , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Separação Celular/métodos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados , Meios de Cultura Livres de Soro , Células Alimentadoras , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Testículo
11.
Mar Biotechnol (NY) ; 19(6): 579-591, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942506

RESUMO

The tiger puffer Takifugu rubripes is one of the most popular aquacultural fish; however, there are two major obstacles to selective breeding. First, they have a long generation time of 2 or 3 years until maturation. Second, the parental tiger puffer has a body size (2-5 kg) much larger than average market size (0.6-1.0 kg). The grass puffer Takifugu niphobles is closely related to the tiger puffer and matures in half the time. Furthermore, grass puffer can be reared in small areas since their maturation weight is about 1/150 that of mature tiger puffer. Therefore, to overcome the obstacles of maturation size and generation time of tiger puffer, we generated surrogate grass puffer that can produce tiger puffer gametes through germ cell transplantation. Approximately 5000 tiger puffer testicular cells were transplanted into the peritoneal cavity of triploid grass puffer larvae at 1 day post hatching. When the recipient fish matured, both males and females produced donor-derived gametes. Through their insemination, we successfully produced donor-derived tiger puffer offspring presenting the same body surface dot pattern, number of dorsal fin rays, and DNA fingerprint as those of the donor tiger puffer, suggesting that the recipient grass puffer produced functional eggs and sperm derived from the donor tiger puffer. Although fine tunings are still needed to improve efficiencies, surrogate grass puffer are expected to accelerate the breeding process of tiger puffer because of their short generation time and small body size.


Assuntos
Células Germinativas/transplante , Takifugu/crescimento & desenvolvimento , Animais , Aquicultura/métodos , Células Germinativas/citologia , Larva/crescimento & desenvolvimento , Masculino , Seleção Artificial , Testículo/citologia , Triploidia
12.
Exp Ther Med ; 14(3): 2349-2354, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28962166

RESUMO

To achieve successful spermatogonial transplantation, endogenous germ cells must be depleted in recipient animals to allow donor germ cells to colonize efficiently. Busulfan is commonly used for the depletion of endogenous germ cells in recipient males. However, the optimal dose of busulfan is species-specific, and the optimal dose in tree shrews is yet to be determined. The current study aimed to determine the optimal dose of busulfan for effective suppression of endogenous spermatogenesis in tree shrews. Different doses (15, 20, 25, 30, 35, 40 and 45 mg/kg) of busulfan were injected into tree shrews intraperitoneally. Survival rates of the different treatment groups were calculated at 2 weeks and body weights were measured at 4, 6, 8, 10 and 28 weeks post-busulfan treatment. The testes were also removed and weighed at 4, 6, 8, 10 and 28 weeks post-treatment, and the cross and longitude diameters of the testes and diameters of the seminiferous tubules were measured and histologically evaluated. It was observed that there were no significant differences in the survival rates between the 15-35 mg/kg treatment groups and the control group (P>0.05), while the survival rate of the 40 mg/kg treatment group significantly decreased relative to the control group (P<0.05) and the survival rate of the 45 mg/kg treatment group was 0% (P<0.05 vs. control). In addition, the weight and diameters of the testes, diameters of the seminiferous tubules and proportion of normal type tubules in the 40 mg/kg group significantly decreased over 4-10 weeks relative to the control group (P<0.05), though gradually recovered with time. At 28 weeks, the recovery was significant relative to 4 weeks (P<0.05). Similarly, histological analysis indicted that recovery of abnormal tubules was delayed in the 40 mg/kg group relative to the lower dose groups as the 40 mg/kg dose tree shrews had more tubules with no spermatogenesis compared with the lower dose group at the same time points. These data indicate that a busulfan dose of 40 mg/kg is optimal for the depletion of endogenous germ cells in tree shrews. This dose led to maximum suppression of endogenous spermatogenesis while maintaining an acceptable survival rate of >50% of the lethal dose of busulfan for tree shrews.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA