Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 102, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409522

RESUMO

The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Ceratodermia Palmar e Plantar , Humanos , Camundongos , Animais , Fosforilação , Proteínas de Transporte/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Transdução de Sinais/genética , Mutação , Neoplasias Esofágicas/genética
2.
Int J Cancer ; 153(1): 183-196, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912284

RESUMO

Fanconi anemia (FA) is a heritable malformation, bone marrow failure and cancer predisposition syndrome that confers an exceptionally high risk of squamous carcinomas. These carcinomas originate in epithelia lining the mouth, proximal esophagus, vulva and anus: their origins are not understood, and no effective ways have been identified to prevent or delay their appearance. Many FA-associated carcinomas are also therapeutically challenging: they may be multi-focal and stage-advanced at diagnosis, and most individuals with FA cannot tolerate standard-of-care systemic therapies such as DNA cross-linking drugs or ionizing radiation due to constitutional DNA damage hypersensitivity. We developed the Fanconi Anemia Cancer Cell Line Resource (FA-CCLR) to foster new work on the origins, treatment and prevention of FA-associated carcinomas. The FA-CCLR consists of Fanconi-isogenic head and neck squamous cell carcinoma (HNSCC) cell line pairs generated from five individuals with FA-associated HNSCC, and five individuals with sporadic HNSCC. Sporadic, isogenic HNSCC cell line pairs were generated in parallel with FA patient-derived isogenic cell line pairs to provide comparable experimental material to use to identify cell and molecular phenotypes driven by germline or somatic loss of Fanconi pathway function, and the subset of these FA-dependent phenotypes that can be modified, complemented or suppressed. All 10 FANC-isogenic cell line pairs are available to academic, non-profit and industry investigators via the "Fanconi Anemia Research Materials" Resource and Repository at Oregon Health & Sciences University, Portland OR.


Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Neoplasias de Cabeça e Pescoço , Feminino , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Anemia de Fanconi/genética , Anemia de Fanconi/complicações , Anemia de Fanconi/patologia , Ciência Translacional Biomédica , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral
3.
Korean J Physiol Pharmacol ; 27(5): 493-511, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37641811

RESUMO

Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3ß signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.

4.
J Clin Lab Anal ; 36(6): e24458, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35476874

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common clinical malignancies of the digestive system, characterized by high mortality but not evident early symptoms. Molecular markers for diagnostic and outcome prediction are urgently needed. Circular RNAs might play essential roles in the progression of ESCC. METHODS: Hsa_circ_0000977 was identified using circRNA microarrays and qRT-PCR. The diagnostic value of hsa_circ_0000977 was calculated. We also examined in vitro cell functions in ECA109 and TE12 ESCC cells to determine the effect of hsa_circ_0000977. A dual-luciferase reporter vector validated the binding of hsa_circ_0000977 to miR-874-3p. RESULTS: The top 10 significantly upregulated circRNAs from microarray assays were hsa_circ_0000977, hsa_circ_0006220, hsa_circ_0043278, hsa_circ_0000691, hsa_circ_0000288, hsa_circ_0000367, hsa_circ_0021647, hsa_circ_0006440, hsa_circRNA_405571 and hsa_circRNA_100790, while the top 10 significantly downregulated circRNAs were hsa_circ_0008389, hsa_circ_0089763, hsa_circ_0089762, hsa_circ_0000102, hsa_circ_0001714, hsa_circ_0089761, hsa_circ_0007326, hsa_circ_0001549, hsa_circ_0005133 and hsa_circRNA_405965. Hsa_circ_0000977 was significantly upregulated in ESCC (p < 0.01) and had diagnostic value in ESCC. The hsa_circ_0000977 expression level was related to the pT stage and numbers of lymph nodes in ESCC patients. Elevated hsa_circ_0000977 promoted cell proliferation, migration and inhibited apoptosis in ESCC cells. Hsa_circ_0000977 might function as a micro-RNA sponge to competitively bind miR-874-3p. CONCLUSION: Disordered hsa_circ_0000977 expression can promote carcinogenesis in ESCC and might serve as a diagnostic biomarker to evaluate the occurrence and development of esophageal cancer.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Regulação para Cima/genética
5.
World J Surg Oncol ; 20(1): 236, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35840985

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive tract with a poor prognosis. The tumor microenvironment (TME) is mainly composed of tumor cells, stromal cells, and immune cells and plays an important role in ESCC development. There are substantial differences in tumor purity among different parts of ESCC tissues, consisting of distinct immune and stromal cells and variations in the status of hypoxia. Thus, prognostic models of ESCC based on bioinformatic analysis of tumor tissues are unreliable. METHOD: Differentially expressed genes (DEGs) independent of tumor purity and hypoxia were screened by Spearman correlation analysis of public ESCC cohorts. Subsequently, the DEGs were subjected to Cox regression analysis. Then, we constructed a protein-protein interaction (PPI) network of the DEGs using Cytoscape. Intersection analysis of the univariate Cox and PPI results indicated that heparanase (HPSE), an endo-ß-D-glucuronidase capable of cleaving heparan sulfate side chains, was a predictive factor. Gene set enrichment analysis (GSEA) was used to reveal the potential function of HPSE, and single-cell sequencing data were analyzed to evaluate the distribution of HPSE in immune cells. Furthermore, a human ESCC tissue microarray was used to validate the expression and prognostic value of HPSE. RESULT: We found that HPSE was downregulated in ESCC tissues and was not correlated with tumor purity or hypoxia status. HPSE is involved in multiple biological processes. ESCC patients with low HPSE expression in cancerous tissues exhibited poor prognosis. CONCLUSIONS: These results indicate that low HPSE expression in cancerous tissues correlates with poor prognosis in patients with ESCC. HPSE is a novel prognostic biomarker independent of tumor purity and hypoxia status in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Hipóxia/genética , Imuno-Histoquímica , Prognóstico , Microambiente Tumoral
6.
Medicina (Kaunas) ; 57(2)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670031

RESUMO

Background and Objectives: Increased osteopontin (OPN) concentrations in the plasma of patients with head and neck squamous cancer (HNSCC) have diagnostic significance, and it can indicate more aggressive biological behavior of cancer. The aim of this study was to determine OPN levels in patients with HNSCC of different primary locations and to assess its prognostic significance in metastasis development. Materials and Methods: This cohort study included 45 patients (41 male and 4 female patients) with HNSCC with different primary localization of head and neck. All patients underwent surgery-neck dissection. All patients were categorized according to the histological findings of the resected material and tumor-node-metastasis (TNM) classification system. After surgery, N categories were determined on the basis of histological features of resected material. Results: The histological findings of our patients showed: N0 in 11 patients, N1 in 8 patients, N2a in 4 patients, N2b in 14 patients and N2c in 8 patients. Plasma OPN values in all study participants ranged from 2.24 to 109.10 ng/mL. OPN levels in plasma of patients with negative nodes compared to the group of patients with positive nodes in the neck differed significantly (16.89 ng/mL to 34.08 ng/mL, respectively; p = 0.03). There were significantly lower OPN plasma levels in the group of subjects with histologically positive one lymph node in the neck (N1) compared to the group of patients with N2b histologically positive findings of resected neck material (10.4 ng/mL to 43.9 ng/mL, respectively; p = 0.02). Conclusions: The results have shown that growing N degrees of positive neck nodes classification were accompanied by growing values of plasma osteopontin. Osteopontin might be important for the development of neck metastases.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Osteopontina/sangue , Carcinoma de Células Escamosas/patologia , Estudos de Coortes , Feminino , Humanos , Linfonodos/patologia , Masculino , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos
7.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961992

RESUMO

Deoxypodophyllotoxin (DPT) derived from Anthriscus sylvestris (L.) Hoffm has attracted considerable interest in recent years because of its anti-inflammatory, antitumor, and antiviral activity. However, the mechanisms underlying DPT mediated antitumor activity have yet to be fully elucidated in esophageal squamous cell carcinoma (ESCC). We show here that DPT inhibited the kinase activity of epidermal growth factor receptor (EGFR) directly, as well as phosphorylation of its downstream signaling kinases, AKT, GSK-3ß, and ERK. We confirmed a direct interaction between DPT and EGFR by pull-down assay using DPT-beads. DPT treatment suppressed ESCC cell viability and colony formation in a time- and dose-dependent manner, as shown by MTT analysis and soft agar assay. DPT also down-regulated cyclin B1 and cdc2 expression to induce G2/M phase arrest of the cell cycle and upregulated p21 and p27 expression. DPT treatment of ESCC cells triggered the release of cytochrome c via loss of mitochondrial membrane potential, thereby inducing apoptosis by upregulation of related proteins. In addition, treatment of KYSE 30 and KYSE 450 cells with DPT increased endoplasmic reticulum stress, reactive oxygen species generation, and multi-caspase activation. Consequently, our results suggest that DPT has the potential to become a new anticancer therapeutic by inhibiting EGFR mediated AKT/ERK signaling pathway in ESCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Lignanas/farmacologia , Podofilotoxina/análogos & derivados , Apiaceae/química , Apoptose/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Podofilotoxina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629820

RESUMO

Esophageal squamous cell carcinoma (ESCC), a major histologic type of esophageal cancer, is one of the frequent causes of cancer-related death worldwide. Picropodophyllotoxin (PPT) is the main component of Podophyllum hexandrum root with antitumor activity via apoptosis-mediated mechanisms in several cancer cells. However, the underlying mechanism of the PPT effects in apoptosis induction in cancer remains ambiguous. Hence, in this study, we evaluate the anti-cancer effects of PPT in apoptotic signaling pathway-related mechanisms in ESCC cells. First, to verify the effect of PPT on ESCC cell viability, we employed an MTT assay. PPT inhibited the viability of ESCC cells in time- and dose-dependent manners. PPT induced G2/M phase cell cycle arrest and annexin V-stained cell apoptosis through the activation of the c-Jun N-terminal kinase (JNK)/p38 pathways. Furthermore, the treatment of KYSE 30 and KYSE 450 ESCC cells with PPT induced apoptosis involving the regulation of endoplasmic reticulum stress- and apoptosis-related proteins by reactive oxygen species (ROS) generation, the loss of mitochondrial membrane potential, and multi-caspase activation. In conclusion, our results indicate that the apoptotic effect of PPT on ESCC cells has the potential to become a new anti-cancer drug by increasing ROS levels and inducing the JNK/p38 signaling pathways.


Assuntos
Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Podofilotoxina/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Isomerismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
BMC Cancer ; 19(1): 865, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470801

RESUMO

BACKGROUND: This study aims to investigate the expression of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 in bulky cervical squamous carcinoma and its predictive role in cisplatin-based neoadjuvant chemotherapy. METHODS: Initially, the expression of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 protein was analyzed in 13 human cervical squamous cancer tissues and their paired adjacent non-cancerous tissues by western-blotting and immunohistochemistry. Then, correlation between the expression of thioredoxin 1, peroxiredoxin 1, peroxiredoxin 2 and responses to cisplatin-based neoadjuvant chemotherapy was analyzed in 35 paired tumor samples (pre- and post-chemotherapy) from bulky cervical squamous cancer patients by immunohistochemistry. RESULTS: A clinical response occurred in 48.6% (17/35) of patients, including 14.3% (5/35) with a complete response and 34.3% (12/35) with a partial response. The expression of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 was much higher in cervical squamous cancer tissues compared with paired adjacent non-cancerous tissues by western-blotting and immunohistochemistry. Additionally, the expression of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 was significantly up-regulated in post-chemotherapy tissues compared to pre-chemotherapy cervical cancer tissues. High levels of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 were associated with a poor chemotherapy response in cervical squamous cancer patients. CONCLUSIONS: Thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 are frequently over-expressed in cervical squamous cancer. High expression levels of these proteins were related to a poor response to cisplatin-based neoadjuvant chemotherapy. The present study is the first report that thioredoxin peroxidase system may serve as a prediction of the responses to neoadjuvant chemotherapy in cervical squamous cancer.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/uso terapêutico , Peroxirredoxinas/metabolismo , Tiorredoxinas/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Adulto , Idoso , Carcinoma de Células Escamosas/metabolismo , Estudos de Casos e Controles , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Prognóstico , Análise de Sobrevida , Resultado do Tratamento , Regulação para Cima , Neoplasias do Colo do Útero/metabolismo
10.
Clin Exp Pharmacol Physiol ; 45(7): 720-728, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29461644

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide; however, clinical and pathological parameters have limited ability in discriminating between clinically significant and indolent ESCC. Since RasGRP3 transcript levels have prognostic value in discriminating ESCC with different clinical aggressiveness, we decided to investigate its putative oncogenic role in ESCC. We found that RasGRP3 was highly expressed in ESCC cells. Suppression of endogenous RasGRP3 expression in esophageal cell lines reduced Ras-GTP formation as well as AKT phosphorylation. RasGRP3 suppression also inhibited cell invasion and migration and reduced proliferation, demonstrating the importance of RasGRP3 for the transformed phenotype of melanoma cells. Suppression of RasGRP3 expression in these cells inhibited downstream RasGRP3 responses and suppressed cell growth and migration, confirming the functional role of RasGRP3 in the altered behaviour of these cells. This suggests that RasGRP3 may function as a Ras activator in the phosphoinositide signalling pathway and may potentially serve as a new therapeutic target.


Assuntos
Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores ras de Troca de Nucleotídeo Guanina
11.
World J Surg Oncol ; 16(1): 109, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914539

RESUMO

BACKGROUND: This study was carried out to discover the underlying role that HOXA11 plays in lung squamous cancer (LUSC) and uncover the potential corresponding molecular mechanisms and functions of HOXA11-related genes. METHODS: Twenty-three clinical paired LUSC and non-LUSC samples were utilized to examine the level of HOXA11 using quantitative real-time polymerase chain reaction (qRT-PCR). The clinical significance of HOXA11 was systematically analyzed based on 475 LUSC and 18 non-cancerous adjacent tissues from The Cancer Genome Atlas (TCGA) database. A total of 102 LUSC tissues and 121 non-cancerous tissues were available from Oncomine to explore the expressing profiles of HOXA11 in LUSC. A meta-analysis was carried out to further assess the differential expression of HOXA11 in LUSC, including in-house qRT-PCR data, expressing data extracted from TCGA and Oncomine databases. Moreover, the enrichment analysis and potential pathway annotations of HOXA11 in LUSC were accomplished via Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of hub genes and according correlations with HOXA11 were assessed to further explore the biological role of HOXA11 in LUSC. RESULTS: HOXA11 expression in LUSC had a tendency to be upregulated in comparison to adjacent non-cancerous tissues by qRT-PCR. TCGA data displayed that HOXA11 was remarkably over-expressed in LUSC compared with that in non-LUSC samples, and the area under curves (AUC) was 0.955 (P < 0.001). A total of 1523 co-expressed genes were sifted for further analysis. The most significant term enriched in the KEGG pathway was focal adhesion. Among the six hub genes of HOXA11, including PARVA, ILK, COL4A1, COL4A2, ITGB1, and ITGA5, five (with the exception of COL4A1) were significantly decreased compared with the normal lung tissues. Moreover, the expression of ILK was negatively related to HOXA11 (r = - 0.141, P = 0.002). CONCLUSION: High HOXA11 expression may lead to carcinogenesis and the development of LUSC. Furthermore, co-expressed genes might affect the prognosis of LUSC.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/sangue , Biologia Computacional , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/sangue , Humanos , Neoplasias Pulmonares/sangue , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico
12.
Biochem Biophys Res Commun ; 473(2): 382-7, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26946357

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common types of the head and neck cancer. Chemo resistance of OSCC has been identified as a substantial therapeutic hurdle. In this study, we analyzed the role of miR-203 in the OSCC and its effects on cisplatin-induced cell death in an OSCC cell line, Tca8113. There was a significant decrease of miR-203 expression in OSCC samples, compared with the adjacent normal, non-cancerous tissue. After 3 days cisplatin treatment, the survived Tca8113 cells had a lower expression of miR-203 than that in the untreated control group. In contrast, PIK3CA showed an inverse expression in cancer and cisplatin survived Tca8113 cells. Transfection of Tca8113 cells with miR-203 mimics greatly reduced PIK3CA expression and Akt activation. Furthermore, miR-203 repressed PIK3CA expression through targeting the 3'UTR. Restoration of miR-203 not only suppressed cell proliferation, but also sensitized cells to cisplatin induced cell apoptosis. This effect was absent in cells that were simultaneously treated with PIK3CA RNAi. In summary, these findings suggest miR-203 plays an important role in cisplatin resistance in OSCC, and furthermore delivery of miR-203 analogs may serve as an adjuvant therapy for OSCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Cisplatino/farmacologia , MicroRNAs/metabolismo , Neoplasias da Língua/tratamento farmacológico , Regiões 3' não Traduzidas , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Humanos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Língua/efeitos dos fármacos , Língua/metabolismo , Língua/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia
13.
Biotechnol Lett ; 37(12): 2365-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26264242

RESUMO

OBJECTIVES: To investigate the effect of retinoblastoma-binding protein 2 (RBP2) on epithelial-mesenchymal transition (EMT) in esophageal squamous cancer cells and to compare the effect of RBP2 in lung squamous cancer cells and esophageal squamous cancer cells. RESULTS: When transfected with RBP2 siRNA, the migrated cells were 36.3 ± 6.03 by transwell migration assay, compared to 107 ± 6.7 cells in the control group. The mRNA level of epithelial cadherin (E-cadherin) was 1.54 ± 0.14 times higher than in the control group, and that of neural cadherin (N-cadherin) fell to 0.76 ± 0.03 times. The relative luciferase activity of E-cadherin promoter rose to 3.84 ± 0.23 times. Correspondingly, the expression of E-cadherin protein increased and that of N-cadherin protein decreased. When SK-MES-1 cells were transfected with RBP2 siRNA, their relative mRNA level of E-cadherin was 8.6 ± 0.37 times as high as that in control group, which was higher than that in Eca-109 cells. The E-cadherin protein was also greater in SK-MES-1 cells. CONCLUSION: RBP2 could induce EMT in esophageal cancer cells and exert a greater effect on the expression of E-cadherin in lung squamous cells than in esophageal squamous cells.


Assuntos
Carcinoma de Células Escamosas/patologia , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/patologia , Neoplasias Pulmonares/patologia , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Caderinas/análise , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Proteína 2 de Ligação ao Retinoblastoma/genética
14.
Int J Mol Sci ; 16(7): 15104-17, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26151845

RESUMO

BubR1 is a critical component of spindle assembly checkpoint, ensuring proper chromatin segregation during mitosis. Recent studies showed that BubR1 was overexpressed in many cancer cells, including oral squamous cell carcinomas (OSCC). However, the effect of BubR1 on metastasis of OSCC remains unclear. This study aimed to unravel the role of BubR1 in the progression of OSCC and confirm the expression of BubR1 in a panel of malignant OSCC cell lines with different invasive abilities. The results of quantitative real-time PCR showed that the mRNA level of BubR1 was markedly increased in four OSCC cell lines, Ca9-22, HSC3, SCC9 and Cal-27 cells, compared to two normal cells, normal human oral keratinocytes (HOK) and human gingival fibroblasts (HGF). Moreover, the expression of BubR1 in these four OSCC cell lines was positively correlated with their motility. Immunofluorescence revealed that BubR1 was mostly localized in the cytosol of human gingival carcinoma Ca9-22 cells. BubR1 knockdown significantly decreased cellular invasion but slightly affect cellular proliferation on both Ca9-22 and Cal-27 cells. Consistently, the activities of metastasis-associated metalloproteinases MMP-2 and MMP-9 were attenuated in BubR1 knockdown Ca9-22 cells, suggesting the role of BubR1 in promotion of OSCC migration. Our present study defines an alternative pathway in promoting metastasis of OSCC cells, and the expression of BubR1 could be a prognostic index in OSCC patients.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Movimento Celular , Metaloproteinase 2 da Matriz/metabolismo , Neoplasias Bucais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Serina-Treonina Quinases/genética
15.
J Oral Pathol Med ; 43(8): 585-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24645915

RESUMO

OBJECTIVES: Lymph node metastasis is a prominent clinical feature of tongue squamous cell carcinoma (TSCC) and is associated with a higher mortality rate. Carcinoma-associated fibroblasts (CAFs), a major component of the tumor microenvironment (TME), play an important role in tumor progression, and are associated with a poor prognosis. The aim of this study was to examine the role of CAFs in promoting the invasion of TSCC through the epithelial-to-mesenchymal transition (EMT). MATERIALS AND METHODS: A series of matched CAF and normal fibroblast (NF) pairs were assessed for cell morphology and for the expression of alpha smooth muscle actin (α-SMA), stromal cell-derived factor-1 (SDF1), fibroblast-activating protein (FAP), vimentin, and cytokeratin (CK) markers. Transwell assays, Western blot analysis, reverse transcription-PCR, and immunofluorescence staining were used to assess the role of CAFs, as compared to that of NFs, in promoting proliferation, migration, invasion, and EMT in TSCC. RESULTS: Both CAF and NF primary cultures expressed vimentin but not CK. CAFs showed significantly higher α-SMA protein levels, SDF1 secretion, and mRNA levels of α-SMA, SDF1, and FAP. We also found that co-culture with CAFs enhanced the proliferation and invasion of SCC9 cells. Moreover, co-culture with CAFs induced upregulation of the EMT markers fibronectin and vimentin, downregulation of E-cadherin, and enhanced invasion in SCC9 cells. CONCLUSION: These results suggest that CAFs induce EMT marker expression and functional changes in TSCCs.


Assuntos
Carcinoma de Células Escamosas/patologia , Transição Epitelial-Mesenquimal/fisiologia , Fibroblastos/patologia , Neoplasias da Língua/patologia , Actinas/análise , Adulto , Idoso , Antígenos de Neoplasias/análise , Caderinas/análise , Carcinoma de Células Escamosas/secundário , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Forma Celular , Células Cultivadas , Quimiocina CXCL12/análise , Técnicas de Cocultura , Endopeptidases , Feminino , Fibroblastos/fisiologia , Fibronectinas/análise , Gelatinases/análise , Humanos , Queratinas/análise , Metástase Linfática/patologia , Masculino , Proteínas de Membrana/análise , Pessoa de Meia-Idade , Invasividade Neoplásica , Serina Endopeptidases/análise , Microambiente Tumoral/fisiologia , Vimentina/análise
16.
Phytother Res ; 28(12): 1879-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25196544

RESUMO

Kahweol, the coffee-specific deterpene, has been shown to have potential anti-cancer effects against several cancers. However, the molecular mechanisms underlying the anti-cancer activity of kahweol have not yet established. In this study, we investigated whether kahweol could show anti-cancer effects on oral squamous cell lines (OSCCs), HN22 and HSC4. We conducted an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, 4'-6-diamidino2-phenylindole (DAPI) staining, propidium iodide staining, immunocytochemistry, and Western blot analysis for the characterization of kahweol and the underlying signaling pathway. We determined that kahweol-treated cells showed significantly decreased cell viability and increased nuclear condensation and an increased sub-G1 population in OSCCs. Interestingly, suppression of the transcription factor specificity protein 1 (Sp1) was followed by induced apoptosis by kahweol in a dose-dependent manner. In addition, kahweol modulated the protein expression level of the Sp1 regulatory genes including cell cycle regulatory proteins and anti-apoptotic proteins, resulting in apoptosis. Taken together, results from these findings suggest that kahweol may be a potential anti-cancer drug candidate to induce apoptotic cell death through downregulation of Sp1 in OSCCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/patologia , Diterpenos/farmacologia , Neoplasias Bucais/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo
17.
Clin Oncol (R Coll Radiol) ; 36(1): 30-38, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827946

RESUMO

AIM: To compare the clinical efficacy and safety of first-line treatments for advanced unresectable oesophageal squamous cell cancer. MATERIALS AND METHODS: A systematic review and network meta-analysis was carried out by retrieving and retaining relevant literature from databases. The studies were randomised controlled trials comparing first-line treatments for advanced unresectable oesophageal squamous cell cancer. A Bayesian network meta-analysis was used to assess clinical outcomes. RESULTS: Nine studies including 4499 patients receiving first-line treatments were analysed. For all populations, toripalimab plus chemotherapy tended to provide the best overall survival (hazard ratio 0.58, 95% confidence intervals 0.43-0.78) and sintilimab plus chemotherapy provided the best progression-free survival (0.56, 0.46-0.68). Nivolumab plus chemotherapy presented the best objective response rate (odds ratio 2.45, 1.78-3.42) and camrelizumab plus chemotherapy (0.47, 0.29-0.74) appeared to be the safest. Sintilimab plus chemotherapy (0.55, 0.40-0.75) and nivolumab (0.54, 0.37-0.80) plus chemotherapy had the best overall survival in programmed death ligand 1 (PD-L1) tumour proportion score <1% and ≥1% subgroups. Toripalimab plus chemotherapy (0.61, 0.40-0.93) and pembrolizumab (0.57, 0.43-0.75) were the best in overall survival in combined positive score <10 and ≥10 subgroups, respectively. Toripalimab plus chemotherapy showed the best overall survival in the Asian group; pembrolizumab presented better overall survival in the Asian population than the non-Asian group. CONCLUSION: Most immunotherapy combined with chemotherapy showed superior clinical benefits and sintilimab plus chemotherapy, toripalimab plus chemotherapy and tislelizumab plus chemotherapy had better comprehensive clinical efficacy. PD-L1 expression detection and ethnicity differences are still of great significance and most suitable regimens varied from each subgroup.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Pulmonares , Humanos , Nivolumabe/uso terapêutico , Antígeno B7-H1 , Metanálise em Rede , Teorema de Bayes , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Neoplasias Esofágicas/patologia , Células Epiteliais/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
18.
Mol Cell Biol ; 44(1): 27-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270135

RESUMO

The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cell carcinomas, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in MCF10A mammary epithelial cells as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for p63 repression. This suggests that regulation of p63 expression occurs by a noncanonical version of the Hippo pathway. We identified similarly regulated genes, suggesting the broader importance of this pathway. Interestingly, lowering p63 expression lead to increased YAP protein levels, indicating crosstalk of the YAP/TAZ-independent and -dependent branches of the Hippo pathway. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells.


Assuntos
Via de Sinalização Hippo , Transdução de Sinais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
19.
Transl Oncol ; 44: 101924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430712

RESUMO

BACKGROUND: Head and neck cancer is the sixth most common malignancy worldwide, and oral squamous cell carcinoma (OSCC) is the most common head and neck cancer, being one of the leading causes of cancer morbidity and mortality worldwide. CC Chemokine receptor 7(CCR7) is a multifunctional G protein-coupled trans-membrane chemokine that affects immune cell chemotaxis, migration, and cancer progression through its interaction with its ligands C-C motif chemokine ligand 19(CCL19) and C-C motif chemokine ligand 21(CCL21). Numerous studies have demonstrated the involvement of CCR7 in the malignant progression of a variety of cancers, reflecting the pro-cancer properties of CCR7. The Cancer Genome Atlas data suggests CCR7 has elevated expression in oral cancer. Specifically, CCR7 expression in tumor microenvironment (TME) may regulate the ability of some immune cells to engage in anti-tumor immune responses. Since CD8+ T cells have become a key immunotherapeutic target, the role of CCR7 in antitumor immune response of naïve CD8+ T cells in TME has not been thoroughly investigated. METHODS: A CCR7 knockout mouse model was constructed, and the mechanism of ccr7 on the regulation of tumor microenvironment by naïve CD8+ T cells was verified under the guidance of single-cell RNA sequencing combined with in vivo animal experiments and in vitro cell experiments. RESULTS: CCR7 is knocked out with impaired tumor growth and altered CD8+ T cell profiles, revealing the importance of this protein in OSCC. CONCLUSIONS: Inhibition of CCR7 enhances CD8+ T cell activation, proliferation, and anti-tumor function, suggesting its potential as a therapeutic target.

20.
Cancer Rep (Hoboken) ; 6(3): e1759, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36534072

RESUMO

BACKGROUND: Esophageal cancer (EC) is the sixth leading cause of cancer-related death, despite many advances in treatment, the survival of patients still remains poor. In recent years, the N6-methyladenosine (m6A) has been introduced as one of the most important modifications at the epitranscriptome level, with an important role in the mRNA regulation in various diseases, such as cancers. The m6A is regulated by different factors, including FTO as a demethylase. The m6A modification, especially through FTO overexpression has an oncogenic role in different cancer types such as EC. Recent studies showed that entacapone, a catechol-o-methyl transferase (COMT) inhibitor currently applied for Parkinson's disease, can inhibit FTO enzyme. AIMS: In this study, we aimed to investigate the effect of entacapone as an FTO inhibitor on the m6A level and also apoptosis and cell cycle response in KYSE-30 and YM-1 of esophageal squamous cancer cell (ESCC) lines. METHODS: Cell toxicity and IC50 of entacapone were evaluated using The MTT assay in YM-1 and KYSE-30 cells. Cells were treated into two groups: DMSO (control) and entacapone (mean IC50 ). Total RNA was extracted, and m6A levels were measured via the ELISA method. Subsequently, the apoptosis and cell cycle dys-regulation were detected by annexin-V-FITC/PI staining and PI staining via flow cytometry. RESULTS: Entacapone has the cytotoxicity effect on both esophageal cancer cell lines compared to normal PBMC cells. As well, entacapone treatment (140 µM) can induce apoptosis (KYSE-30: 50%. YM-1:22.6%) and has a modulatory effect on cell cycle progression in both YM-1 and KYSE-30 cells (p-value<.05). However, no significant difference in the m6A concentration was observed. CONCLUSION: Our findings suggested that entacapone has the inhibitory effect on ESCC cell lines through induction of the apoptosis and modulation of the cell cycle without toxicity on the normal PBMC.


Assuntos
Catecol O-Metiltransferase , Neoplasias Esofágicas , Humanos , Catecol O-Metiltransferase/farmacologia , Leucócitos Mononucleares/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Apoptose , Ciclo Celular , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA