Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 14(11): 6704-10, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25314674

RESUMO

Silicon alloys have the highest specific capacity when used as anode material for lithium-ion batteries; however, the drastic volume change inherent in their use causes formidable challenges toward achieving stable cycling performance. Large quantities of binders and conductive additives are typically necessary to maintain good cell performance. In this report, only 2% (by weight) functional conductive polymer binder without any conductive additives was successfully used with a micron-size silicon monoxide (SiO) anode material, demonstrating stable and high gravimetric capacity (>1000 mAh/g) for ∼500 cycles and more than 90% capacity retention. Prelithiation of this anode using stabilized lithium metal powder (SLMP) improves the first cycle Coulombic efficiency of a SiO/NMC full cell from ∼48% to ∼90%. The combination enables good capacity retention of more than 80% after 100 cycles at C/3 in a lithium-ion full cell.

2.
ACS Appl Mater Interfaces ; 14(2): 2871-2880, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34989548

RESUMO

Lithium metal batteries (LMBs) are a promising candidate for next-generation energy storage devices. However, the high irreversibility and dead Li accumulation of the lithium metal anode caused by its fragile original solid electrolyte interface (SEI) seriously hinder the practical application of LMBs. Herein, a facile slurry-coating and one-step thermal fluorination reaction method is proposed to construct the 3D structural LiF-protected Li/G composite anode. The existence of a 3D LiF protection layer is convincingly confirmed and the function of the Li/G skeleton is discussed in detail. The 3D structural LiF protection layer results in superior electrochemical performance by improving the utilization of Li and suppressing the accumulation of dead Li in symmetric and full coin cells. Moreover, a 0.85 Ah pouch cell strictly following the parameters of the practical battery industry can work stably for 140 cycles with a gradual internal resistance increase. This novel Li/G composite anode indicates a promising strategy in lithium/carbon composite anodes for LMBs, and the facile thermal fluorination reaction method presented in this paper offers a new method for the construction of a 3D structural protection layer for lithium metal anodes.

3.
Polymers (Basel) ; 10(8)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30960855

RESUMO

In the present study, a novel sulfur/lithium-ion full battery was assembled while using ternary sulfur/polyacrylonitrile/SiO2 (S/PAN/SiO2) composite as the cathode and prelithiated graphite as the anode. For anode, Stabilized Lithium Metal Powder (SLMP) was successfully transformed into lithiated graphite anode. For cathode, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that SiO2 was uniformly distributed on S/PAN composites, where SiO2 served as an effective additive due to its ultra high absorb ability and enhanced ability in trapping soluble polysulfide. The tested half-cell based on S/PAN/SiO2 composite revealed high discharge capacity of 1106 mAh g-1 after 100 cycles at 0.2 C. The full cell based on prelithiated graphite//S/PAN/SiO2 composite system delivered a specific capacity of 810 mAh g-1 over 100 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA