RESUMO
Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality.
Assuntos
Encéfalo , Equidade de Gênero , Masculino , Adulto , Humanos , Feminino , Encéfalo/diagnóstico por imagem , Fatores SexuaisRESUMO
Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.
Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Imageamento por Ressonância Magnética , Encéfalo/patologia , Córtex Motor/patologiaRESUMO
BACKGROUND: Migraine and depression are two of the most common and debilitating conditions. From a clinical perspective, they are mostly prevalent in women and manifest a partial overlapping symptomatology. Despite the high level of comorbidity, previous studies hardly investigated possible common patterns in brain volumetric differences compared to healthy subjects. Therefore, the current study investigates and compares the volumetric difference patterns in sub-cortical regions between participants with migraine or depression in comparison to healthy controls. METHODS: The study included data from 43 930 participants of the large UK Biobank cohort. Using official ICD10 diagnosis, we selected 712 participants with migraine, 1 853 with depression and 23 942 healthy controls. We estimated mean volumetric difference between the groups for the different sub-cortical brain regions using generalized linear regression models, conditioning the model within the levels of BMI, age, sex, ethnical background, diastolic blood pressure, current tobacco smoking, alcohol intake frequency, Assessment Centre, Indices of Multiple Deprivation, comorbidities and total brain volume. RESULTS: We detected larger overall volume of the caudate (mean difference: 66, 95% CI [-3, 135]) and of the thalamus (mean difference: 103 mm3, 95% CI [-2, 208]) in migraineurs than healthy controls. We also observed that individuals with depression appear to have also larger overall (mean difference: 47 mm3, 95% CI [-7, 100]) and gray matter (mean difference: 49 mm3, 95% CI [2, 95]) putamen volumes than healthy controls, as well as larger amygdala volume (mean difference: 17 mm3, 95% CI [-7, 40]). CONCLUSION: Migraineurs manifested larger overall volumes at the level of the nucleus caudate and of the thalamus, which might imply abnormal pain modulation and increased migraine susceptibility. Larger amygdala and putamen volumes in participants with depression than controls might be due to increased neuronal activity in these regions.
Assuntos
Depressão , Transtornos de Enxaqueca , Humanos , Feminino , Depressão/epidemiologia , Bancos de Espécimes Biológicos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/epidemiologia , Reino Unido/epidemiologiaRESUMO
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
Assuntos
Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética , Neuroimagem , Transtorno Bipolar/tratamento farmacológico , Genética , Hipocampo/efeitos dos fármacos , HumanosRESUMO
PTEN hamartoma tumor syndrome (PHTS) is a spectrum of hereditary cancer syndromes caused by germline mutations in PTEN. PHTS is of high interest, because of its high rate of neurological comorbidities including macrocephaly, autism spectrum disorder, and intellectual dysfunction. Since detailed brain morphology and connectivity of PHTS remain unclear, we quantitatively evaluated brain magnetic resonance imaging (MRI) in PHTS. Sixteen structural T1-weighted and 9 diffusion-weighted MR images from 12 PHTS patients and neurotypical controls were used for structural and high-angular resolution diffusion MRI (HARDI) tractography analyses. Mega-corpus callosum was observed in 75%, polymicrogyria in 33%, periventricular white matter lesions in 83%, and heterotopia in 17% of the PHTS participants. While gyrification index and hemispheric cortical thickness showed no significant differences between the two groups, significantly increased global and regional brain volumes, and regionally thicker cortices in PHTS participants were observed. HARDI tractography showed increased volume and length of callosal pathways, increased volume of the arcuate fasciculi (AF), and increased length of the bilateral inferior longitudinal fasciculi (ILF), bilateral inferior fronto-occipital fasciculi (IFOF), and bilateral uncinate fasciculus. A decrease in fractional anisotropy and an increased in apparent diffusion coefficient values of the AF, left ILF, and left IFOF in PHTS.
Assuntos
Transtorno do Espectro Autista/genética , Encéfalo/diagnóstico por imagem , Síndrome do Hamartoma Múltiplo/genética , PTEN Fosfo-Hidrolase/genética , Anisotropia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Criança , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Feminino , Síndrome do Hamartoma Múltiplo/diagnóstico por imagem , Síndrome do Hamartoma Múltiplo/epidemiologia , Síndrome do Hamartoma Múltiplo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologiaRESUMO
Regional anatomical structures of the brain are intimately connected to functions corresponding to specific regions and the temporospatial pattern of genetic expression and their functions from the fetal period to old age. Therefore, quantitative brain morphometry has often been employed in neuroscience investigations, while controlling for the scanner effect of the scanner is a critical issue for ensuring accuracy in brain morphometric studies of rare orphan diseases due to the lack of normal reference values available for multicenter studies. This study aimed to provide across-site normal reference values of global and regional brain volumes for each sex and age group in children and adolescents. We collected magnetic resonance imaging (MRI) examinations of 846 neurotypical participants aged 6.0-17.9 years (339 male and 507 female participants) from 5 institutions comprising healthy volunteers or neurotypical patients without neurological disorders, neuropsychological disorders, or epilepsy. Regional-based analysis using the CIVET 2.1.0. pipeline provided regional brain volumes, and the measurements were across-site combined using ComBat-GAM harmonization. The normal reference values of global and regional brain volumes and lateral indices in our study could be helpful for evaluating the characteristics of the brain morphology of each individual in a clinical setting and investigating the brain morphology of ultra-rare diseases.
RESUMO
Purpose: Covariance between gray-matter measurements can reflect structural or functional brain networks though it has also been shown to be influenced by confounding factors (e.g., age, head size, and scanner), which could lead to lower mapping precision (increased size of associated clusters) and create distal false positives associations in mass-univariate vertexwise analyses. Approach: We evaluated this concern by performing state-of-the-art mass-univariate analyses (general linear model, GLM) on traits simulated from real vertex-wise gray matter data (including cortical and subcortical thickness and surface area). We contrasted the results with those from linear mixed models (LMMs), which have been shown to overcome similar issues in omics association studies. Results: We showed that when performed on a large sample ( N = 8662 , UK Biobank), GLMs yielded greatly inflated false positive rate (cluster false discovery rate > 0.6 ). We showed that LMMs resulted in more parsimonious results: smaller clusters and reduced false positive rate but at a cost of increased computation. Next, we performed mass-univariate association analyses on five real UKB traits (age, sex, BMI, fluid intelligence, and smoking status) and LMM yielded fewer and more localized associations. We identified 19 significant clusters displaying small associations with age, sex, and BMI, which suggest a complex architecture of at least dozens of associated areas with those phenotypes. Conclusions: The published literature could contain a large proportion of redundant (possibly confounded) associations that are largely prevented using LMMs. The parsimony of LMMs results from controlling for the joint effect of all vertices, which prevents local and distal redundant associations from reaching significance.
RESUMO
The interaction between brain damage and motor function is not yet fully understood in children with spastic cerebral palsy (CP). Therefore, a semi-quantitative MRI (sqMRI) scale was used to explore whether identified brain lesions related to functional abilities and gait pathology in this population. A retrospective cohort of ambulatory children with spastic CP was selected [N = 104; 52 bilateral (bCP) and 52 unilateral (uCP)]. Extent and location-specific scores were defined according to the sqMRI scale guidelines. The gross motor function classification system (GMFCS), the gait profile score (GPS), GPSs per motion plane, gait variable scores (GVS) and multiple-joint (MJ) gait patterns were related to brain lesion scores. In all groups, the global total brain scores correlated to the GPS (total: r s = 0.404, p ≤ 0.001; bCP: r s = 0.335, p ≤ 0.05; uCP: r s = 0.493, p ≤ 0.001). The global total hemispheric scores correlated to the GMFCS (total: r s = 0.392, p ≤ 0.001; bCP: r s = 0.316, p ≤ 0.05; uCP: r s = 0.331, p ≤ 0.05). The laterality scores of the hemispheres in the total group correlated negatively to the GMFCS level (r s = -0.523, p ≤ 0.001) and the GVS-knee sagittal (r s = -0.311, p ≤ 0.01). Lesion location, for the total group demonstrated positive correlations between parietal lobe involvement and the GPS (r s = 0.321, p ≤ 0.001) and between periventricular layer damage and the GMFCS (r s = 0.348, p ≤ 0.001). Involvement of the anterior part of the corpus callosum (CC) was associated with the GVS-hip sagittal in all groups (total: r pb = 0.495, p ≤ 0.001; bCP: r pb = 0.357, p ≤ 0.05; uCP: r pb = 0.641, p ≤ 0.001). The global total hemispheric and laterality of the hemispheres scores differentiated between the minor and both the extension (p ≤ 0.001 and p ≤ 0.001) and flexion (p = 0.016 and p = 0.013, respectively) MJ patterns in the total group. Maximal periventricular involvement and CC intactness were associated with extension patterns (p ≤ 0.05 and p ≤ 0.001, respectively). Current findings demonstrated relationships between brain structure and motor function as well as pathological gait, in this cohort of children with CP. These results might facilitate the timely identification of gait pathology and, ultimately, guide individualized treatment planning of gait impairments in children with CP.
RESUMO
CHARGE syndrome (CS) is a rare congenital syndrome characterized by coloboma, heart anomaly, choanal atresia, retardation of growth and development, and genital and ear anomalies. While several neuroimaging studies have revealed abnormalities such as hypoplasia of the semicircular canal, olfactory nerve, cerebellum, and brainstem, no quantitative analysis of brain morphology in CS has been reported. We quantitatively investigated brain morphology in CS participants using structural magnetic resonance imaging (MRI) (Nâ¯=â¯10, mean age 14.7â¯years old) and high-angular resolution diffusion MRI (HARDI) tractography (Nâ¯=â¯8, mean age 19.4â¯years old) comparing with gender- and age-matched controls. Voxel-based analyses revealed decreased volume of the bilateral globus pallidus (left and right; pâ¯=â¯0.021 and 0.029), bilateral putamen (pâ¯=â¯0.016 and 0.011), left subthalamic nucleus (pâ¯=â¯0.012), bilateral cerebellum (pâ¯=â¯1.5â¯×â¯10-6 and 1.2â¯×â¯10-6), and brainstem (pâ¯=â¯0.031), and the enlargement of the lateral ventricles (pâ¯=â¯0.011 and 0.0031) bilaterally in CS. Surface-based analysis revealed asymmetrically increased cortical thickness in the right hemisphere (pâ¯=â¯0.013). The group-wise differences observed in global cortical volume, gyrification index, and left cortical thickness were not statistically significant. HARDI tractography revealed reduced volume, elongation, and higher ADC values in multiple fiber tracts in patients in CS compared to the controls, but FA values were not statistically significantly different between the two groups. Facial features are known to be asymmetric in CS, which has been recognized as an important symptom in CS. Our results revealed that the cortex in CS has an asymmetric appearance similar to the facial features. In addition, the signal pattern of high ADC with statistically unchanged FA values of tractography pathways indicated the presence of other pathogenesis than vasogenic edema or myelination dysfunction in developmental delay in CS.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Síndrome CHARGE/diagnóstico por imagem , Síndrome CHARGE/patologia , Adolescente , Criança , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos , Adulto JovemRESUMO
Rett syndrome (RTT) is a rare congenital disorder which in most cases (95%) is caused by methyl-CpG binding protein 2 (MECP2) mutations. RTT is characterized by regression in global development, epilepsy, autistic features, acquired microcephaly, habitual hand clapping, loss of purposeful hand skills, and autonomic dysfunctions. Although the literature has demonstrated decreased volumes of the cerebrum, cerebellum, and the caudate nucleus in RTT patients, surface-based brain morphology including cortical thickness and cortical gyrification analyses are lacking in RTT. We present quantitative surface- and voxel-based morphological measurements in young children with RTT and Rett-like syndrome (RTT-l) with MECP2 mutations. The 8 structural T1-weighted MR images were obtained from 7 female patients with MECP2 mutations (3 classic RTT, 2 variant RTT, and 2 RTT-l) (mean age 5.2 [standard deviation 3.3] years old). Our analyses demonstrated decreased total volumes of the cerebellum in RTT/RTT-l compared to gender- and age-matched controls (t (22)=-2.93, p = .008, Cohen's d = 1.27). In contrast, global cerebral cortical surface areas, global/regional cortical thicknesses, the degree of global gyrification, and global/regional gray and white matter volumes were not statistically significantly different between the two groups. Our findings, as well as literature findings, suggest that early brain abnormalities associated with RTT/RTT-l (with MECP2 mutations) can be detected as regionally decreased cerebellar volumes. Decreased cerebellar volume may be helpful for understanding the etiology of RTT/RTT-l.